

Unusual High Acidity in Distribution Transformers - Results Analysis

27th November 2024

Background

IEEE Transactions on Distantics and Electrical Involution Fiel 25, No. 8, June 2016

2488

An Early Degradation Phenomenon Identified through Transformer Oil Database Analysis

S.J. Tee, Q. Liu, Z.D. Wang School of Flictional and Electronic Engineering The University of Manchester Manchester, MID 991, UK

G. Wilson, P. Jarman, R. Hooton The National Gold Company Warvick, CVM 4DA, UK

> D. Walker Soziah Power Blastyn, G72 OHT, 130

and P. Dyer UK Power Networks Carelies, RH10 0FL, UK

ABSTRACT

Ageing of large transformer fleets is a dealinege for utilities. To seems the condition of existing transformer fleets, transformer oil is commonly isoted for multiple parameters and the data are reconcided in large databases for unterpretation. Through analyzing multiple databases including oil test results and individual transformer details pertuising to UK in-service transformers operating at primary with age levels of 30, 132, 275 and 400 kV, population analyzes revealed a generic world opgendation phenomenon as indicated by an early near averaging and 2.0 All trends with in-service age. By exploring the phenomeno from manufacturer, loading and il density datage perpetitive, resulting from hydrotrastateset oil refining method introduced in the late 1990k. Judging from the flatter edge and in trend of the affected interdimenting and the safet common from level of gradation trend of the affected interdimenters, a separate many many mark beginstation trend of the affected in the late 1990k. Judging from the flatter edge and in trend of the affected interdimenters.

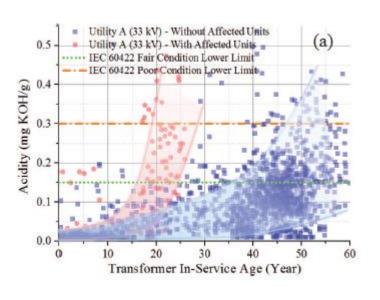
index Terros - Power transformers, in-service units, database analysis, addity, also runi ageing early degradation, most management.

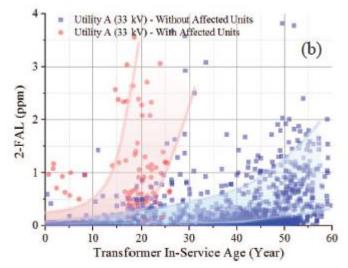
1 INTRODUCTION

TRANSFORMER design lifetimes are estimated to be dont 45 years for transmission and around 60 years for distribution transformers [1-3]. With transformer insulations well understood to detections in anytics and horning the consolications of large transformer populations in large transmers in Figure 1), agoing assessment in the second second practice to facilitate transformer and transporter [1].

As transformers ago, the institute system consisting of a legal (typically misseed o'l) and own or some aclish (typically Kurfl paper and prandomy) will degrade, relating agoing product that are not just standark lost due capable of damging ministics properties. Due to its same of acome, transformer of a

Alimatrip retarial on 11.865 2011, a fluid free 8.5 actually 3011, acressed 12 Distantic 2012


assured y sampled and tasked for multiple parameters to assure


spring of the oil itself and size the solid insulation.

haly Las Barly Barly 1996,

Figure 1. Manufacturing your distribution for insufferment at different voltage lands contributed by form UK william.

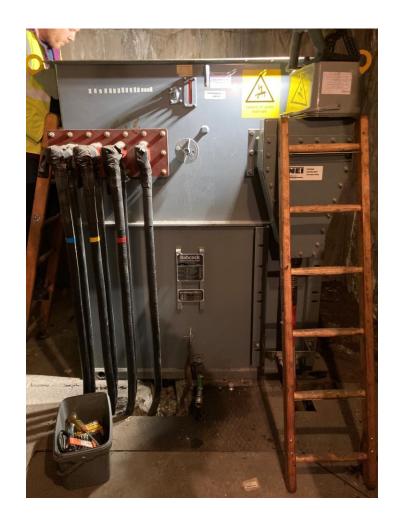
DOI: 10.1109-7142-3913-981969

Commercial Union – 200 SVS

🖨 ChemTX

Mineral Oil - Analysis Report 232127

Customer	Scottish Power Energy Networks (SPEN)	Rating	800kVA
Location / Site Name	SPD Glasgow	Manufacturer	Babcock
Substation Name	Commercial Union	Year of Manufacture	1992
Transformer	T1	Sample Temp (*C)	20
Sample Point	Main Tank	Date Sample Taken	26/06/2023
Serial Number	122264-9	Date Received at Lab	26/06/2023
Voltage Ratio	11kV / 430V	Date Analysis completed	27/06/2023


Dissolved Gas Analysis	Units	Typical values (BSEN60599:2022) for Power Transformers	SAMPLE RESULT
Hydrogen (H2)	μ1/1	50 - 150	2.8
Oxygen (O2)	μ(/)	None Given	31326
Nitrogen (N2)	μ(/1	None Given	63910
Carbon Monoxide (CO)	μ(/1	400 - 500	45.4
Methane (CH4)	μ(/1	30 - 130	0.7
Carbon Dioxide (CO2)	μ(/1	3800 - 14000	1392
Ethylene (C2H4)	μ(/	60 - 280	16
Ethane(C2H6)	μ4/1	20-90	0.4
Acetylene (C2H2)	μ(/	2 - 20 (No 0175), 60 - 280 (Communicating 0175)	0.0
Results RELOW (goins) solve range	· _	Accurt MCNIN Spiker water range	Result ABOW Spical value range

Physical Analysis	Units		Action Limits for it (RSENSO422:2014	SAMPLE RESULT	
		6000	TAR	POOR	
Water Content	mg/kg	<30	30 - 40	>40	68
Water Content (Corrected to 20degC)	mg/kg	-			
Acidity	mgKOH/g	<0.15	0.15 - 0.30	>0.30	2.053
Breakdown Voltage	kV	>40	30-40	<30	ы
Colour (Visual / ASTM)		Clear and Without		Dark and/or	Brown / L7.0
Appearance		Visible		Turbid	Hazy (Debris)
Odour		Normal		Acrid	Normal
Dielectric Dissipation Factor (DDF) 40- 60Hz 90degC		<0.10	0.10 - 0.50	>0.50	-
Realstivity (@90degC)	GOm	>8	0.2 - 3	<0.2	
Interfacial Tension	mN/m	>25 (university) >28 (university)	20-25 (Uninhb) 22 - 28 (inhb)	<20 (uninstated) <22 percent	
Inhibitor Content	*	value	40% - 60% of original Value	-ot056 of original Value	
2-Furfural	mg/kg	4			4.85
2-Acetylfuran	mg/kg	-			0.09
2-Furturylaicohol	mg/kg	-			<0.05
5-hydroxymethyl-2-furfursi	mg/kg	-		-	<0.05
5-methyl-2-furfural	mg/kg	-		-	0.21
Total Polychiorinated Siphenyl (PCS)	mg/kg	<50		≥50	
Passivator	mg/kg	>70	50-70	<50	
Dibenzyl Disulphide (DBDS)	mg/kg	-	-	-	
Corrosive Sulphur		Non Corrosive		Potentially Corrosive	

Realizagion above are on the assumption that survest sampling techniques have been utilized and in accordance with BS EN 60475-2011 Method of sampling insulating liquids

- Following the investigation of the Commercial Union Tx, the Oil Dashboard was analysed to spot any trends with similar units.
- Our original theory of oil contamination initially led us to transformers manufactured roughly 30+ years ago.
 Correlations were found between high acidity and 2-fal with units from Babcock, NEI Peebles and NI Transformers.
 With the vast majority falling between at 1988-1996.
- The re-sampling and analysis of oil dashboard revealed that many of these units are suffering from very poor oil results, and in many cases breaching the 0.5 limit for acidity. This can be seen in two trends -
- 30 year old units (Radiator Issue) Total Volume 1806 Units (359 Babcock, 1447 NEI/Peebles/NI).
- Circa 60 year old units

DISTRICT	Manufacturer T	Age 📑	Moisture 🐣	Acidity 🚽	2-Fal 👘	Breakdown 🗾	C02 💌
Lanarkshire	Ni Transformers (Uk) Ltd	33	101	3.896	5.48	66	3800
Glasgow	NEI Peebles	33	134	2.327	6.39	26	10107
Glasgow	Peebles Dist Transformers	32	168	1.976	35.61	20	25856
Glasgow	Babcock	32	69	1.94	4.85	37	1392
Glasgow	EB Nitran	34	100	1.763	5.52	53	8199
Dumfries	Ni Transformers (Uk) Ltd	33	196	1.691	5.51	14	19140
Dumfries	Ni Transformers (Uk) Ltd	36	95	1.034	0.73	37	5897
Central & Fife	Peebles Dist Transformers	33	57	0.944	0.25	64	5716
Lanarkshire	Babcock	31	69	0.929	5.7	48	4325
Ayrshire & Clyde South	Babcock	31	61	0.855	8.1	39	1936
Dumfries	Babcock	31	86	0.84	0.42	37	3863
Edinburgh & Borders	Babcock	32	76	0.5.63	0.14	33	8633

DISTRICT *	Manufacturer *	Age 💌	Moisture *	Acidity 🚽	2-Fal *	Breakdown	C02 *
Ayrshire & Clyde South	Bonar Long	60	145	2.485	1.2	30	7959
Lanarkshire	Distribution Trans Ltd	53	202	2.3.03	0.82	22	98.43
Ayrshire & Clyde South	Bruce Peebles	N/A	38	2.2.43	0.05	63	698
Lanarkshire	Bruce Peebles	62	188	2.009	4,33	30	19930
Central & Fife	Bonar Long	62	164	1.861	1.72	30	5894
Ayrshire & Clyde South	Bruce Peebles	N/A	32	1.705		71	
Ayrshire & Clyde South	Bruce Peebles	N/A	40	1.602	0.06	69	726
Glasgow	Bonar Long	60	169	1.575	1.82	29	17838
Lanarkshire	Bonar Long	43	108	1.451	1.17	28	3899
Glasgow	Bruce Peebles	77	31	1.39	0.05	61	636
Ayrshire & Clyde South	Distribution Trans Ltd	N/A	125	1.364	8.85	35	10378
Glasgow	Bonar Long	63	101	1.328	5.23	27	5895
Edinburgh & Borders	Bonar Long	60	101	1.326		38	
Glasgow	Bonar Long	62	65	1.101	0.59	36	2332
Ayrshire & Clyde South	Lindley Thompson	N/A	78	1.06	4.11	30	6478
Edinburgh & Borders	Bruce Peebles	66	54	1.049		26	
Central & Fife	Ferranti (Denis)	60	38	1.043	8.26	38	2915

Case Studies - Auchinbee Centre

Mineral Oil - Analysis Report 233388

Customer	Scottish Power Energy Networks (SPEN)	Rating	1000kVA
Location / Site Name	SPD Lanarkshire	Manufacturer	NEI
Substation Name	Auchinbee Centre	Year of Manufacture	1991
Transformer	Tx	Sample Temp (°C)	14
Sample Point	Main Tank Bot	Date Sample Taken	19/09/2023
Serial Number	700177771	Date Received at Lab	19/09/2023
Voltage Ratio	11kV	Date Analysis completed	27/09/2023

Dissolved Gas Analysis	Units	Typical values (BSEN60599:2022) for Power Transformers	SAMPLE RESULT
Hydrogen (H2)	μ/I	50 - 150	13.9
Oxygen (O2)	μ/Ι	None Given	20942
Nitrogen (N2)	μ/I	None Given	63794
Carbon Monoxide (CO)	µі/і	400 - 600	620
Methane (CH4)	ا/لي	30 - 130	13.6
Carbon Dioxide (CO2)	1/لير	3800 - 14000	3800
Ethylene (C2H4)	μ/I	60 - 280	22.7
Ethane(C2H6)	ا/لير	20 - 90	5.1
Acetylene (C2H2)	µі/і	2 - 20 (No OLTC), 60 - 280 (Communicating OLTC)	0.0
Results BELOW typical value range		Result WITHIN typical value range	Result ABOVE typical value range

Physical Analysis	Units		Action Limits for in (BSEN60422:2013		SAMPLE RESULT
		GOOD	FAIR	POOR	
Water Content	mg/kg	<30	30 - 40	>40	101
Water Content (Corrected to 20degC)	mg/kg				101.0
Acidity	mgKOH/g	<0.15	0.15 - 0.30	>0.30	3.896
Breakdown Voltage	kV	>40	30 - 40	<30	66
Colour (Visual / ASTM)	-	Clear and Without		Dark and/or	Brown / L6.5
Appearance		Visible		Turbid	Cloudy / Particles
Odour		Normal		Acrid	Normal
Dielectric Dissipation Factor (DDF) 40- 60Hz 90degC		<0.10	0.10 - 0.50	>0.50	
Resistivity (@90degC)	GΩm	>3	0.2 - 3	⊲0.2	
Interfacial Tension	mN/m	>25 (uninhibited) >28 (inhibited)	20-25 (Uninhib) 22 - 28 (Inhib)	<20 (uninhibited) <22 (inhibited)	-
Inhibitor Content	%	>60% of original value	40% - 60% of original Value	<40% of original Value	
2-Furfural	mg/kg	<1			5.48
2-Acetylfuran	mg/kg				<0.05
2-Furfurylalcohol	mg/kg				0.54
5-hydroxymethyl-2-furfural	mg/kg				<0.05
5-methyl-2-furfural	mg/kg				0.33
Total Polychlorinated Biphenyl (PCB)	mg/kg	<50		≥ 50	
Passivator	mg/kg	>70	50 - 70	-50	-
Dibenzyl Disulphide (DBDS)	mg/kg				
Corrosive Sulphur		Non Corrosive		Potentially Corrosive	

** Results given above are on the assumption that correct sampling techniques have been utilised and in accordance with BS EN 60475:2011 Method of sampling insulating liquids**

Case Studies – Central Hotel

Mineral Oil - Analysis Report 233208

Conformer (Southish Power Energy Networks (SPEN)	Rating	20008-94
Location / Sile Name	SPD bilasgow	Manafacturer	Parsons Peebles
Address Name	Central Hutel	Near of Manufacture	1991
Transformer	12	Sample Temp (*C)	10
Scerpte Point	Main Tank But	Date Sample Taken	54/09/3038
in the Number	700176482	Date Received of Lab	54/09/3038
Voltage Actio	228W / 425W	Date Analysis completed	14/09/3038

Dissilved Bas Analysis	Units.	Typical versam (8521062889-2022) for Power Transformers	LAWPU RELLT
Hydrogen (K2)	1	80 - 190	803
Cogen (CO)	1947 - C	None Sket	22304
Missigan (N2)		Name Strein	71208
Carbon Monoside (CC)	1	400-400	100
Methane (CH)	page 1	80-130	100
Carbon Dividite (002)	100	3800 - 34000	3584
Ristma (C24)	1	60 - 383	340
Ritana (CPR)	1	20-80	8.4
Austylene (C2K2)	1	2 - 30 particip, 60 - 380 (consisting (01))	8.5
Annual Market Science when Street	•	Start & Start Start and a start	Barriel and the Stationary stream in the str

Physical American	Units.	Cyline	Recommended Action Links For Incometer Cologory Cylices. (NOTHEOCOCOUS), volte 1)		LANPU RELLT
		0.000		1000	
Water-Content		- 33	30-40	240	100
Water Content (Corrected to 20JepC)	mg/kg	-	-		200.0
and the second se		40.33	0.33-0.30	2030	3.079
Reading on Voltage	60°	240	80 - 6 0	-30	22
Colour (Mauni / Alin M	-	Case and Willows	_	Carls and/or	Bases / 17.0
Appendix	-	Vision		Turket	Opençue / Debris
Children	-	Normal	-	Auto	Marmai
Claiment's Chalgeston Pester (CCP) 40- 40% Calego	-	40.30	0.30-0.50	30.80	-
Residency (@000legC)	8		62-5	6 2	-
Interfacial Tension	and the second	Citigation (30-31 (Depend) 32-38 (entry	All passesses All passesses	=
Intelligion Contanti		nin artes	and the second	nakite of antytesi Value	=
2 Puritual		4	-		38.83
a distanting Procession	1	-	-		6.33
- Furf unglatested	1	-	-	-	-0.05
Integrationspecialized a Humbergh		-	-	-	1.04
In manifest 12 sharehoused	100	-	-		0.81
Total Polychic Instal Ripharyl (PCR)	ng Ag	-30	-	280	
		<30 270	-	230 -30	-
Total Polychic Insteal Bipheryl (PCB)	ng/sg				

"Teach give storage or to supprise the sense scoping teacing a low law office and is an electron of 1.01 (017) 1011 (index) descripting basicing lipitis"

Case Studies – Loreburn

🖨 ChemTX

Mineral Oil - Analysis Report 233048

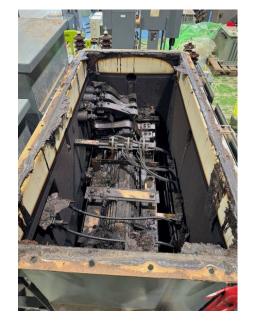
Castomer	Scottish Power Brangy Networks (SPEN)	Salary.	No. Chart
Coostion / Silve Name	SPO Dumfries	Manufacturer	NI Transformers
Substation Name	Loneburne Centre	Year of Manufacture	2990
Transformer	Ta:	Sample Temp (*C)	Multi Gillywyn
Sample Point	Main Tank Bottom	Date Sample Taken	08/09/0018
Seria/Number	700234486	Date Received of Lab	08/09/2028
Voltage Actio	3189	Date Analysis completed	18/29/2018

Disastroni (Bas Analysis	U-Na	Typical values (AMMERCARE 2022) for Power Transformers	MARKE RESULT
Hydrogen (K2)	1	80-380	104
Origen (CC)	10	Nume Stren	100
Nitrogen (MJ)	5	Name Silven	75.45
Carlon Monosida (CO)	page 1	400 - 600	63
Methane (CHI)	1	30-330	225
Carlon Disable (CC2)	14	3800-14000	18640
Ribylana (CDH)	p#P	60-380	114
Riberter (C2H)	1	30 - 80	768
Austylene (CDR2)	5	2-30 (sc mit); 60-280 (scenerizing mit)	2.4
Annaly March Spring other Days		Sand SATE Spatial spins story	Bandt Shifts' that is sain stops

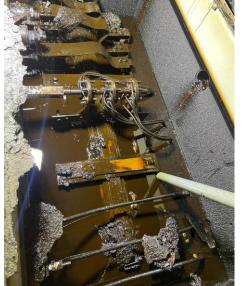
Physical Analysis	Unite:	Recommended Action Dates for in service Cologory Cybers (NEWSCOCCOS), Actio ()			MARKE RELLT		
		10.000	14.8				
Water Content	100		80-60	3483	580		
Nater Content (Corrected to 30depC)	ł	-			=		
Addity		40.33	0.33 -0.30	10.30	1466		
Reachdown Voltage	W.	240	8-6	-00	ы		
Colour (Visual / ASTM	=	Cear and Willow!	_	Dark ans/Arr	Dark / 12.8		
Appendix	I	Ville		Turbit	Company		
Deloar	=	No.	-	Acres	Marinal		
Christian Deduction Partice (SDP) 42- 40ns ShingC	-	+0.30	0.32-0.50	20.90	=		
Restativity (#100alege)	820	8	62-3	8	-		
Interfected Terration		City and the second	20-20 (Leoning) 20-28 (Leoning)	Citi parameteri Citi parameteri	-		
Intellifier Content		ntille af original Telles	and the second	stille of original With	=		
2 Parland	ang be	4	-	-	121		
2 Autority Parent	ng by	-	-	-	4.0		
3 Parturylations		-	-		40		
Billing Score and the Score and	ang ^k gra	-	-	-	-0.0		
B-melleyi 2-fattani	1	-	-	-	4.0		
Total PolyMorheated Signery (NO)	10	-30	-	2/50	=		
Productor	ł	200	8-70	8	=		
Diservyi Diselyhide (DBDI)	N.	-	-	-	=		
Corrective Sulphan		Non Correction	-		-		

basis give show on an increase place for server ampling technique benchmer effect on in manipus with \$15.57.50776.051 Machael dramping instability liquid

Case Studies – Riverford Road


🖨 ChemTX

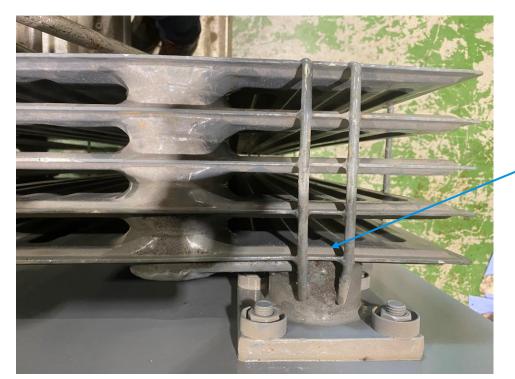
Mineral Oil - Analysis Report 235072


Customer	Southsh Power Energy Networks (IPEN)	Rating	8008WA
Location / Sile Name	SPD Stasgow	Manufacturer	SH METRO
Substation Name	Safemay Riverford Rd	Year of Manufacture	1966
Transformer	Ta	Sample Temp (*C)	10
Sample Point	Main Tank Top	Date Sample Taken	28/11/2018
Sector Number	200180475	Date Received of Lab	28/11/2018
Voltage Actio	118W / 415W	Date Analysis completed	28/11/2018

Dissident für Analysis	3	Typital velas. (8521462889-2022) for Power Transformers	LANPLE RELLET
Hydrogen (K2)	1	80 - 180	78.1
Coger (CI)	1	None Sken	NONE
Altergen (K2)	1	Hame Shrein	8800
Carton Monoside (CD)	1	400-600	187
Methania (CHI)	1	80 - 130	38.7
Carloss Disside (CCC)	100	3800 - 14000	1913
Billylana (C294)	1	60 - 380	348
Biane (CH4)	1	20-90	221
Austylane (CDKC)	1	2 - 30 particip, 10 - 380 (comparing 101)	0.0
Annual Additional Applications and an integra-		An and MARK Spirit color stage	And the second states story.

Physical Analysis	U-la	European and addition Linking for instancing Colongrap Ciplicals (INSTANCECCOCCES, name II)		DAMPU RELLT		
Mater Content	-	-0000	8.448 301-480	240	104	
Mater Centers (Corrected to 20JacC)	-	-	-		101.0	
hilly	and the second	(2.23)	0.13-0.30	2030	8.003	
Resolutioner Volkage	iw.	240	30-60	-30	-	
Colour (Visual / All M	-	Clear and		Cards and Apr	Det / DLD	
Appendix	=	William .		Turkini	Opeque & Particles	
Dalayar	=	Normal	-	Auto	listeri.	
Distantis Dissipation Packer (DDP) 40- 40% Kilagi	I	5	0.30-0.90	2030	=	
Residuity (@KiningC)	8	1	63-3	402	=	
Interfacial Terrator		 Citi protection (Citi Citi protection) 	20-35 (See 6) 20-36 (See 6)	CE products CE products	=	
Intelligion Contanti		nin angesi Mini angesi	and down?	ndörset original Veita	=	
2-Parlant	10	4		(0000)	2.80	
3 dianty Foren	1			(0000)	0.00	
2 Purily labored	1	-	-		41.01	
Interfaction of the Party State	1	-	-	-	0.54	
henningi 2 farfan i	a a		-	-	649	
Total Polychicrimeted Ripherryl (PCI)	j,	-30	-	2/50	=	
Permitantian	ł	200	80-70	-680	=	
Dilamayi Disalahida (2804)	1		-			
Correntive Sulphur		Non Correction	-	Correction of the	=	
Comments	Rengia containe incorrecte contaction in no 1014.					

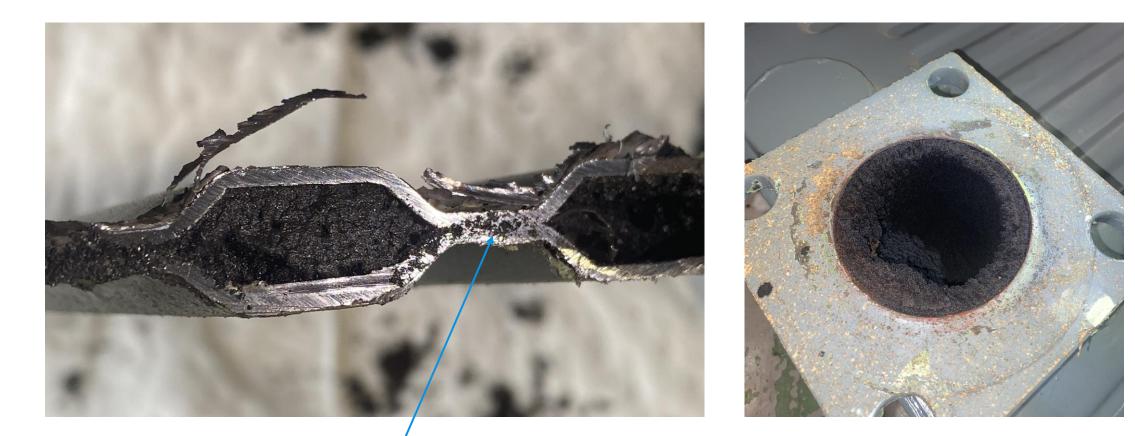
Radiator Header Design



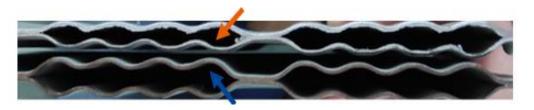
Site visits with thermal cameras, and the post-mortem of the Commercial Union unit revealed the presence of a off-centre radiator header design. This design is prone to blockage in the presence of sludge leading to inadequate cooling and oil flow through the radiators. In turn the high acidity created is causing corrosion of internal lid, and high temperatures in the windings, reducing the mechanical strength of the paper. The worst affected units appear to be situated embedded in basements or in enclosures with poor ventilation and high humidity.

Traditional headers allow for connection to all radiator fins

Typical Header Design



Header Design Under Investigation


This design only connects one fin to the header inlet from the main tank, rather than all 5 restricting oil flow and causing sludge to form

Unusual Tank Attached Radiator Header Design - Effects

Due to radiator punching, there is significantly less space within radiator fins to allow oil to circulate properly when compared to other radiator designs

	Transformer								
Parameter	Commercial Union	Murray Crescent	Underhill	Auchinbee Centre	Sway Riverford Rd	Loreburne	Prestwick Polic		
A phase HV Top	216	323	NłA	198	79	250	201		
A phase HV Bottom	245	341	NłA	256	108	269	310		
A phase LV Top	117	194	479	137	16	102	269		
A phase LV Bottom	93	309	515	146	55	129	289		
B phase HV Top	272	318	NłA	207	86	251	230		
B phase HV Bottom	235	348	NłA	245	87	271	282		
B phase LV Top	97	190	473	146	37	82	254		
B phase LV Bottom	124	332	533	177	60	109	312		
Cphase HV Top	222	303	NłA	192	80	260	233		
C phase HV Bottom	206	328	N/A	246	101	310	273		
C phase LV Top	66	147	538	161	29	110	224		
C phase LV Bottom	103	325	541	160	45	146	322		
Average Measured DP for A Phase	168	292	497	184	65	188	267		
Average Measured DP for B Phase	182	297	503	194	68	178	270		
Average Measured DP for C Phase	149	276	539	190	64	207	263		
Transformer Maximum Measured DP	272	348	538	256	108	310	322		
Transformer Minumum Measured DP	66	147	473	137	16	82	201		
Colour	7	5.5	4	6.5	8	7.5	5		
Acidity mg/kg	2.053	1.861	0.84	3.896	3.051	1.69	0.855		
Moisture mg/kg	68	164	86	101	104	183	61		
2-Fal from oil analysis	4.85	1.72	0.42	5.48	2.8 (sample issues)	5.51	7.97		
Predicted DP from 2-FAL (Walker Formul	296.0821799	363.257386	454.6140368	288,1683895	331.6806618	287.8146124	263.8956449		
Predicted DP from 2-FAL (Chendong For		364.1347295	539.0716313	220.3484119	303.6691339	219.6709718	173.869051		
Fransformer Average DP	166	288	506	189	65	191	267		

- Investigations are still ongoing, but it is thought that oil supplied in the period late 1980's to the mid 1990's is at risk of significant degradation within its normal expected lifetime.
- It has also been proven in switchgear (OR49) that where *clean* (unused or recycled) oil is used to replace severely degraded oil in units affected by oil sludging, the *clean* oil may also suffer from an increased rate of degradation after a relatively short service life. In extreme cases the clean oil may also suffer from the effects of sludging. This is due to the catalytic effects of the oxidation products that may remain in the tank.
- An indicator of potentially affected oil is high levels of Furfural (extraction solvent) which is believed to have been from the refining process.
- SPEN are still investigation the problem, but at this moment we know that a significant number of 11kV distribution transformers and several 33kV primary transformers are affected.

Thank You