

11146

B5 PROTECTION & AUTOMATION PS1 Practical experiences and new developments of process bus

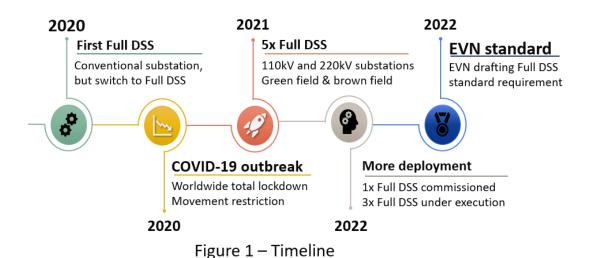
The Full Digital Substation Success in Vietnam

November 26, 2024

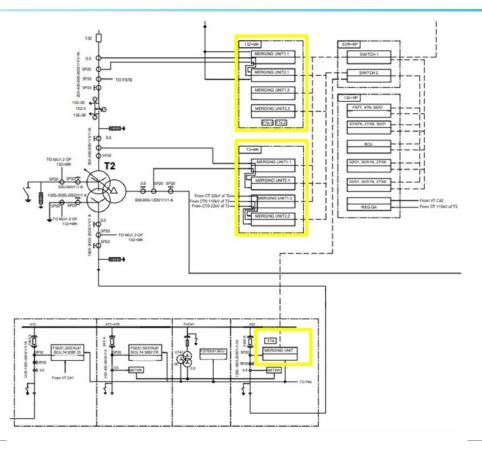
Presenter: Chee-Pinp TEOH

Co-authors: Van Ha NGO, Thanh Tuan BUI, Hung HOANG, Dang-Thoang VO, Chin-Fei CHOW

Confidential. Not to be copied, distributed, or reproduced without prior approval.


Electricity Vietnam (EVN)

Transmission and Distribution Service Operator (TSO & DSO)


Deploy 10 (9 EVN, 1 IPP) full digital substations (IEC 61850 station bus

+ process bus) despite Covid restriction

Typical EVN substation: 1-Line

Outdoor Marshalling Kiosk

Metal-Clad MV Switchgear Application

Architecture

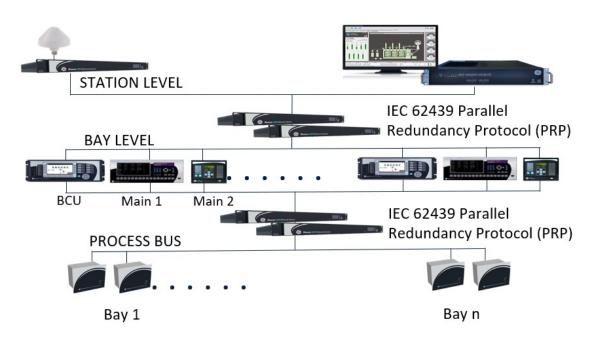
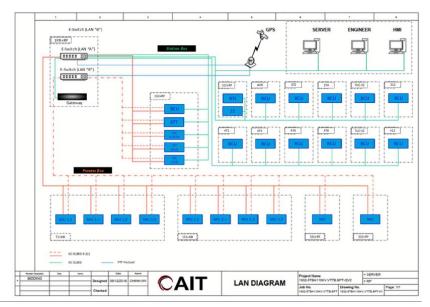
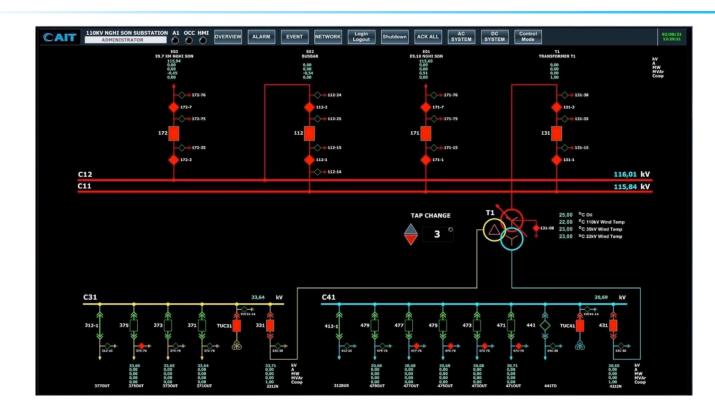



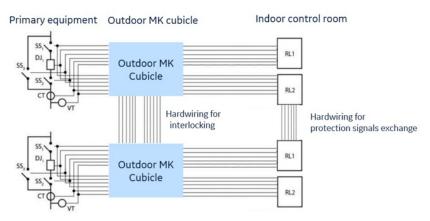
Figure 2 – Conceptual architecture

Separate process bus and station bus

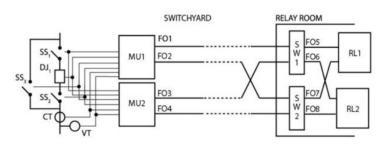
IEC 62439 Parallel Redundancy Protocol (PRP) Ethernet


Application Development Concurrent with Lab Scheme Testing

Example EVN Substation: 110kV Nghi Son Full DSS



One Line and HMI Example


Subtransmission to Two Primary Distribution Voltages Distribution using Draw Out Metal-Clad Switchgear

PACS operating time

Conventional substation scheme

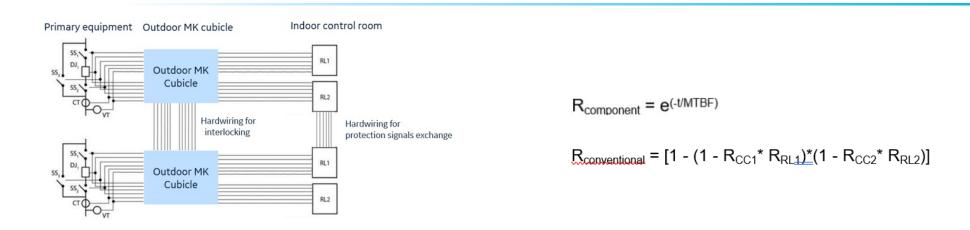
 PACS performance and reliability must never be compromised but must be equivalent or better than the conventional substation

	Total clearance time including primary breaker trip time (EVN requirement <100ms)	
	Conventional substation Digital substation	
	(cooper wires + protection relay)	(merging unit + protection relay)
Transformer protection	<100ms	<100ms
Distance protection	<100ms	<100ms

Table 1: commissioning testing test result

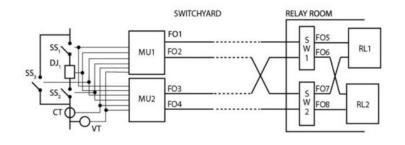
PACS Reliability

PACS Reliability Study


 Reliability is the Probability of a Device Performing Properly, for a Certain Time Period, Under Given Operating Conditions

 $R_{component} = e^{(-t/MTBF)}$

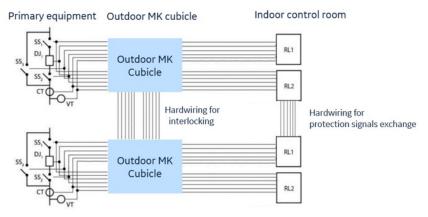
Element	MTBF (years)	Reliability
Protection relay	300	0.9967
Merging Unit	300	0.9967
Ethernet Switch	100	0.9900
Copper Cables	100	0.9900
Fiber Optic Cables	100	0.9900


PACS Reliability – Conventional substation

Element	MTBF (years)	Reliability
Protection relay	300	0.9967
Merging Unit	300	0.9967
Ethernet Switch	100	0.9900
Copper Cables	100	0.9900
Fiber Optic Cables	100	0.9900

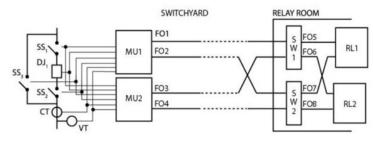
PACS Reliability – Full digital substation

Redundant scheme for every equipment


$$R_{component} = e^{(-t/MTBF)}$$

$$\begin{split} &R_{\text{digital substation}} = [1 - [1 - [[1 - ((1 - R_{\text{FO1}})^*(1 - R_{\text{FO3}}))]^*[1 - ((1 - R_{\text{FO5}})^*(1 - R_{\text{FO7}}))]^*R_{\text{SW1}}]]^* \\ &[1 - [[1 - ((1 - R_{\text{FO2}})^*(1 - R_{\text{FO4}}))]^*[1 - ((1 - R_{\text{FO6}})^*(1 - R_{\text{FO8}}))]^*R_{\text{SW2}}]]]^* \\ &[1 - [(1 - R_{\text{MU1}})^*(1 - R_{\text{MU2}})]]^*[1 - [(1 - R_{\text{RL1}})^*(1 - R_{\text{RL2}})]]^* \\ &[1 - [(1 - R_{\text{FO1}})^*(1 - R_{\text{FO2}})^*(1 - R_{\text{MU2}})]]^*[1 - [(1 - R_{\text{FO3}})^*(1 - R_{\text{FO4}})^*(1 - R_{\text{MU1}})]] \end{split}$$

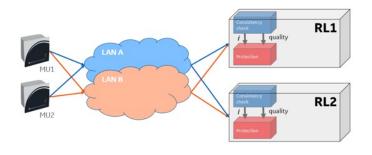
Element	MTBF (years)	Reliability
Protection relay	300	0.9967
Merging Unit	300	0.9967
Ethernet Switch	100	0.9900
Copper Cables	100	0.9900
Fiber Optic Cables	100	0.9900

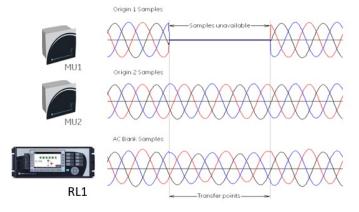


PACS Reliability

Reliability = $R_{copper cables} \& R_{relay}$ = 0.9998

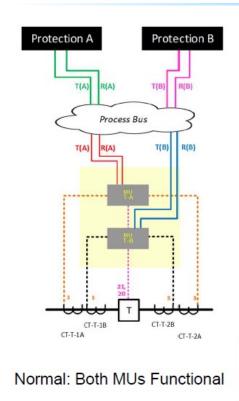
Conventional substation scheme

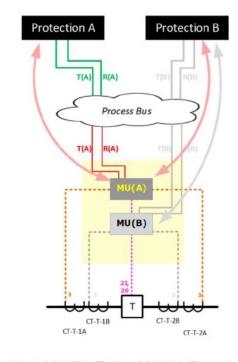



Reliability = $R_{fibre \ cables}$ & R_{relay} & R_{E-SW} & R_{MU} = 0.9999

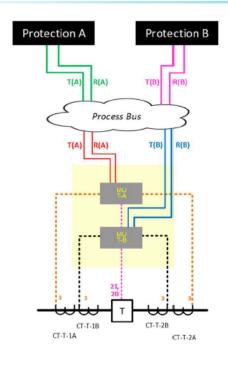
Digital substation scheme

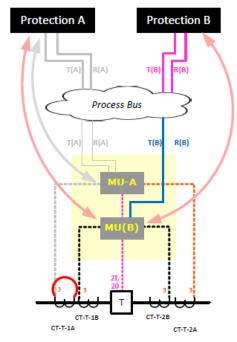
Extra Resiliency in digital substation



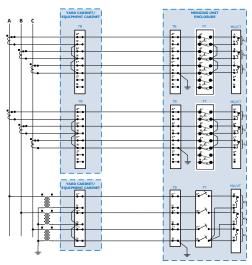

- Digital substation has redundant communication scheme
- Protection automatically switches over SVs on the event of failure
- Increases system availability

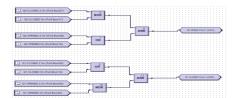
Extra Resiliency in digital substation



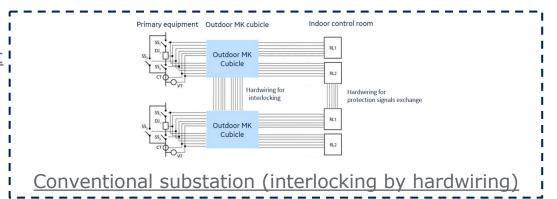

N-1: MU(B) Fails, MU(A) Functional

Extra Resiliency in digital substation

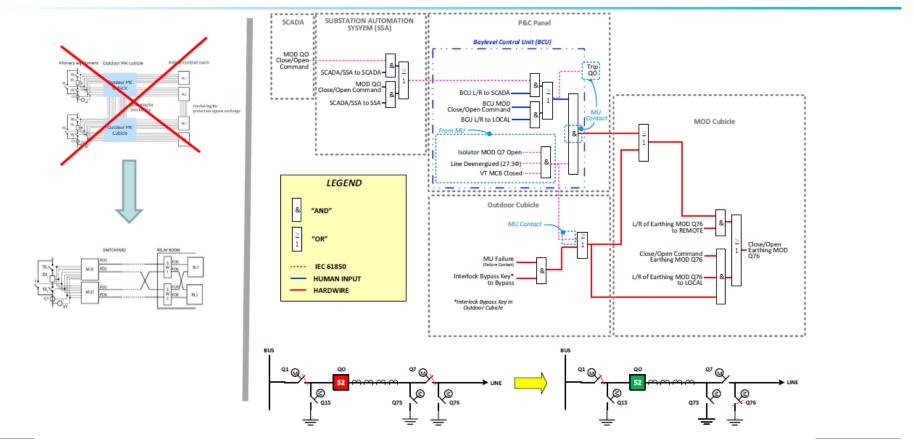

Normal: All CTs Functional


N-1: CT for MU(A) Shorts, MU(B) CTs Functional

Standardisation & sw interlocking

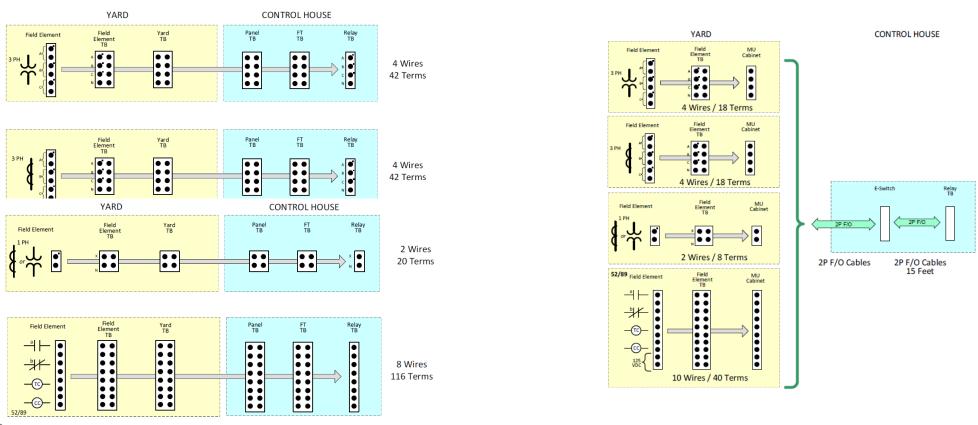


Digital substation: Standard wiring at merging unit


Digital substation: Interlocking by configuration

- Bay design standardisation
- Less drawing
- Interlocking by configuration
- Less trip to the substation because monitoring status remotely
- achieve "Un-manned substation" goal

Digital Substation Standardisation



Cabling and Terminations

Conventional substation

Full digital substation

Footprint reduction

- Less wiring
- Less termination
- Easier for bay extension
- Less footprint

Figure 8: Outdoor cable at a typical conventional substation vs Outdoor cable at 110KV Nghi Son Digital

Station Name	Conventional Substation	Digital Substation
110KV Nghi Son	3 months (Outdoor Cubicle -1 month, Cabling -1 month)	2 weeks

Figure 9: Protection panel at a typical conventional substation vs protection panel at 110KV Nghi Son Digital substation

Comparison with TransGrid Australia Full DSS

K Hinkley& C Mistry, "First Digital Substation in TransGrid – Australia: A Journey, Business Case, Lessons (DPSP 2018)"

Comparison	First digital substation in TransGrid Australia	The average of Full DSs implemented in Vietnamese TSO
Engineering and deployment time	-	Up to -83% reduction
Copper cables and cable trenches	-95% volume reduction	-30%-40% in copper cable -40% termination (compared to a typical conventional substation in Vietnam)
Control Relay Panel footprint	-80% reduction	No change
System Drawings	-90% reduction	-20% reduction (compared to a typical conventional substation in Vietnam)
Size of the Secondary Building	-80% reduction	No change
Commissioning of substations (Labour)	-50% reduction	-10% reduction
Simplified maintenance	Yes	Yes
Project cost	-30% reduction	-30% labour reduction +10% project cost

Conclusions

- To greenlight the 10 digital substations' rapid deployment, conventional substation and digital substation reliability analysis was conducted.
- The digital substation shows that it has advantage and comparable reliability in protection and control (PAC) scheme compared to a conventional substation.
- Based on 10 projects, digital substation standardised engineering was proven to reduce the deployment time.
- Offers benefits in terms of CAPEX and installation, reduction in engineering drawings, remote monitoring, achieve "Un-manned substation" goal
- Also realised other well proven digital substation benefits such as, massive copper wiring reduction, cable termination reduction, space footprint reduction
- The rapid deployment of digital substation is feasible, EVNNPC achieved the need of speed

