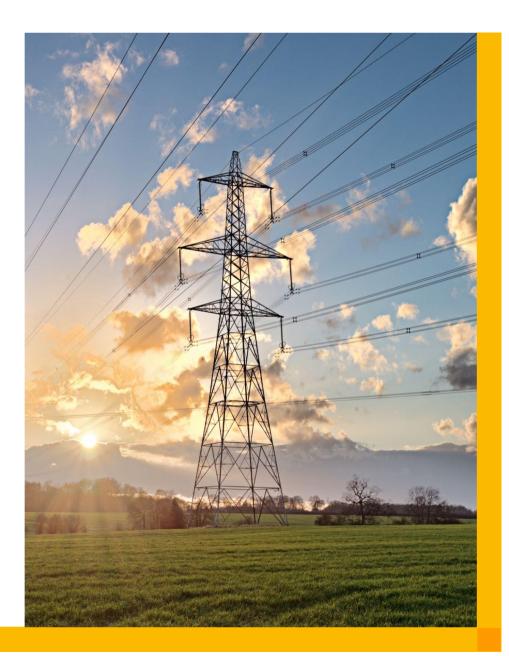
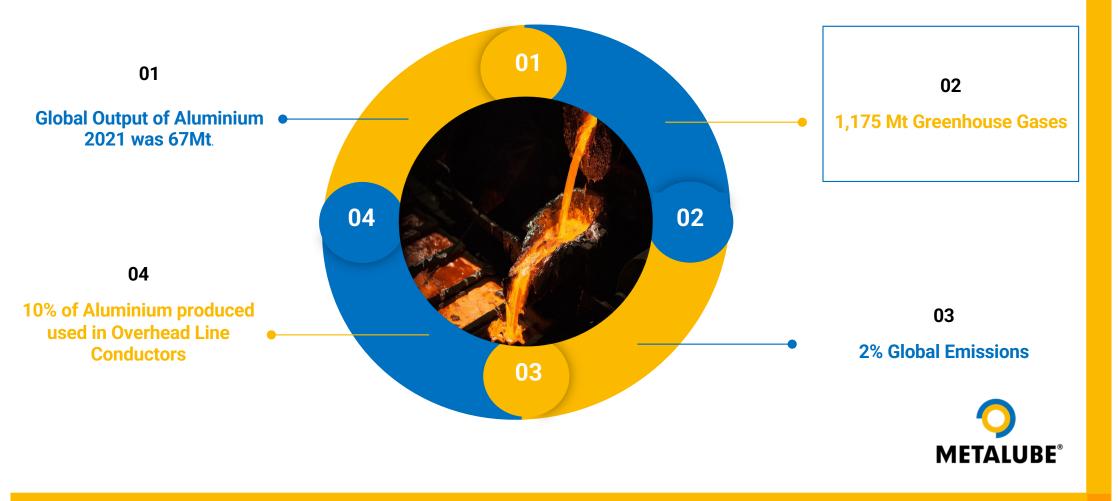

Technology Centre

- New product development is crucial to our business
- More than 20% of our UK staff are focused on developing new sustainable products
- Our Technology Centre is equipped with the latest state-ofthe-art equipment

Metalube is a Carbon Neutral Company

The Environmental Impact of the Aluminium Industry




Why Aluminium

- Use of aluminium is inevitable
- How do we prolong the life of the aluminium assets
- How can we help minimise the Overhead Line Conductor industries carbon footprint

The Aluminium Industry: An Overview

The Sustainability of the Aluminium Industry

- 4 tons of mineral ore bauxite is required to produce 1 ton aluminium
- The 10 largest Bauxite mines involve surface mining practices hazardous to human health and the environment.
- More than 70% of its energy consumption comes from fossil fuels
- Increasing of the proportion of recycled aluminium production
 - Energy requirements for recycled aluminium ~6% compared to that required from bauxite.

CASE STUDY - EXAMPLE

- Ungreased ACSR conductor installed in a coastal region of Italy.
- After 5 years the conductor failed

- Fully greased conductor used in line replacement
- 15+ years conductor is still fully operational

CORROSION THEORY

Atmospheric Corrosion

Aluminium whilst a reactive metal is naturally passivated by a film of aluminium oxides.

Overtime the slow corrosion reaction occurs:

 $2AI + 6H_2O \rightarrow 2AI(OH)_3 + 3H_2$

Atmospheric pollutants accelerate this reaction process.

Galvanic Corrosion

Caused when dissimilar metals are in contact with the presence of water and oxygen.

Galvanic Series:

•Zinc (-1.10V)

- •Aluminium (-0.86V)
- •Low alloy Steel (-0.68V)

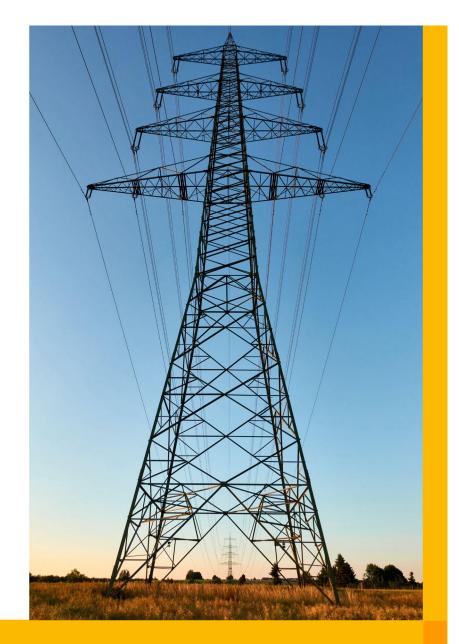
CORROSION IN PRACTICE

Product		Basic Grease	Formulated for Corrosion Resistance
Duration / Hours	24	100	1000
Q-Panels, Type S, SAE 1008. Preparation according to IEC61394/EN50326. ASTM B117 saltspray; 5%NaCl; 35°C			

CASE STUDY - ASSESSMENT UNGREASED

ACSR						
Component	CO ₂ / kg	Material / kg	CO ₂ / kg	CO ₂ / %		
Aluminium	11.62	495	5742	90.88		
Steel	1.56	334	533	4.83		
Zinc	3.1	14	44	0.69		
Total CO ₂ / km		6319				
Material Life / Years		5				
kg CO ₂ Contribution / Year		1263				

CASE STUDY - ASSESSMENT GREASED


Greased ACSR							
Component	CO ₂ / kg	Material / kg	CO ₂ / kg	CO ₂ / %			
Aluminium	11.62	495	5742	90.03			
Steel	1.56	334	533	8.35			
Zinc	3.1	14	44	0.69			
Grease	2.2	27	59	0.93			
Total CO ₂ / km		6378					
Material Life / Years		15+					
kg CO ₂ Contribution / Year		< 425					

> 70% Reduction in GHS Emissions / yr

CONCLUSION

- The aluminium industry has a large contribution to manmade GHG emissions, and the conductor industry is a large consumer of aluminium.
- The production of aluminium comes with a variety of sustainability hurdles
- Use of aluminium is inevitable
- We can help create a more sustainable future by prolonging aluminum conductor asset life
- Greased Vs Ungreased Conductor shows the longevity that can be achieved and with further grease innovations we aim to make aluminium conductors last longer
- Aluminium remains a key raw material in the future of energy distribution. Our duty to make a conductor as sustainable and carbon neutral as possible by seeking maximum payback on the spent emissions.

