Protection and Future Power Networks Dominated by Converters: Recent Learnings on Challenges and Potential Solutions

> Ben Marshall & Dr. Qiteng Hong (National HVDC Centre & University of Strathclyde)

> > 17th May 2023

For power system expertise

The National HVDC Centre – About us

What am I going to talk about..

- Why classical approaches to Protection relays can encounter problems?
- Why should we be interested in this.
- How can we understand & address/ test the problem?
- Why we are interested in this?
- What are the options?
- NIA PSL-FC; what is it doing & why.

So what's the problem?

.

Why are we interested?

- Net Zero= transition to convertor technologies (wind, solar, batteries)
- New approaches to convertor control, e.g. Grid forming.
- Increase in interconnection & HVDC grid reinforcement.
- HVDC largest of convertor injections of fault current-
 - What do we want these to do?
 - How do we want protection to perform?
- By 2030 more convertors than typical demand.
- By 2030 as much Scotland-England transmission via HVDC as via AC

Figure 1: Those recommendations that have been identified as necessary previously.

National Grid ESO, Holistic Network Design: https://www.nationalgrideso.com/document/262676/download

How to address/ understand this-

Understanding requires-

• RT-CHIL of system areas,

- Real protection devices,
- Real protection systems & strategies
- Real converter behaviour,
- Real protection systems,
- Real performance.

Testing requires-

• Either the above,

or

• A representative test bench informed by the above to test the individual components

If behaviour and performance need can be sufficiently distilled.

Testing new solutions

- Open loop= testing the real responses of relays to real system behaviour without the relays then acting on the network.
- Solutions less dependent on the magnitude and polarity of current
- Solutions more complex with greater dependency/ vulnerabilities, e.g. upon communications
- New performance criteria
 - Additional tests
 - Additional data for setting
- New overall protection systems & philosophies

NIA Protection solutions Project - what is it/ why are we doing it?

- Previous work identified and quantified protection risks to conventional resources
- We now are using an adapted test bench working with UoS, SSEN and vendors to explore and demonstrate solutions

MMC HVDC system implemented with typical control strategies:

- Balanced current control (including various grid codes)
- Constant active/reactive power contro
- Injection of different levels of negative sequence current

Representing different NSG penetration levels and system strength (thus fault levels).

- Equivalent impedance of Z_{eq1} and Z_{eq3} .
- Rating of NSG Grid and SC

Different levels of synchronous compensation (SC)

- Adjustable SC rating
- Constant reactive power control
- Droop control

NIA Protection solutions Project- Key Highlights.

- We have simulated a range of options
- We have identified an "open loop" demonstration location.
- We have now progressed a range of tests, and defined monitoring and are setting up for open loop demonstration

Thank you!

Protection and Future Power Networks Dominated by Converters: Recent Learnings on Challenges and Potential Solutions

Dr Qiteng Hong q.hong@strath.ac.uk

Senior Lecturer University of Strathclyde 17/05/2023

imes Higher Education University of the Year 2012 & 2019 imes Higher Education Widening Participation Initiative of the Year 2019 he University of Strathclyde is rated a QS 5-star institution

UK UNIVERSITY

FOR A SECOND TIME

OF THE YEAR

THE QUEEN'S Anniversary Prizes For Human and Former Environment 2009

Overview

- Assessment of fault level required for protection
- Impact of converter control on protection performance
- Explored potential solutions
 - Travelling wave protection
 - Revised distance protection
 - Refined control to facilitate protection operation
- Conclusions

Research Background

- Rapid increase Converter-Based Resources (CBRs)
- Significant changes to system fault behaviour
 - Reduced fault level
 - Control-dependent fault characteristics
- Risks of compromised AC protection performance

• Our research focuses on:

- Assessing impact of reduced fault level and CBR control on protection performance
- Understanding causes for protection failure
- Developing new protection solutions/revising existing protection algorithm for CBR dominated systems
- Refining CBR control to support protection

How Much Fault Level is Required for Protection?

Assessment of Fault Level Required for Differential Protection

Differential protection characteristics

- I'_1 and I'_2 are the secondary currents at two ends of the protected line

Differential protection requirements

To ensure dependability:

Capable of detecting worst case scenario:

- Single-end source with no pre-load
- Able to detect high resistance earth fault (100 Ω used in the study)

Assessment of Fault Level Required for Differential Protection

Differential protection zone:

 $I. I'_{bias} \text{ on Curve } I: I'_{bias} \leq I'_{S2}$ $Y_1 = C_1^2 X_{S1}^{+2} + 2C_1 C_2 X_{S1}^{+} - \left(\left(\frac{C_3}{1.2C_4} \right)^2 + \left(\frac{C_5}{C_4} \right)^2 - 2 \frac{C_3 C_5}{1.2C_4^2} - 300^2 - C_2^2 \right) \leq 0$ $2. I'_{bias} \text{ on Curve } 2: I'_{bias} \leq I'_{S2}$ $Y_2 = C_1^2 X_{S1}^{+2} + 2C_1 C_2 X_{S1}^{+} - \left(\left(\frac{C_3}{1.2C_6} \right)^2 + \left(\frac{C_7}{C_6} \right)^2 - 2 \frac{C_3 C_7}{1.2C_6^2} - C_2^2 - 300^2 \right) \leq 0$

Key observations:

- The relations of Y_1 and X_{S1}^+ , Y_2 and X_{S2}^+ are quadratic
- The maximum source impedance is the greater positive solution of the quadratic curve, i.e. the minimum fault level can be detected for differential protection

Case Study for Differential Protection

University of Strathclyde Engineering

Key findings:

- In networks only with SGs, differential protection can still operate with very low fault level (e.g. 174MVA @275kV).
- Angle of currents play a more important role than fault level – vastly different in CBR dominated networks.

Assessment of Fault Level Required for Distance Protection

Impedance Measured by Distance Relay

Key findings:

- I. Impedance measurement:
 - Network only with SGs: small angle difference $\angle \Delta \Psi$.
 - IBRs can increase $\angle \Delta \Psi$, and lead to the severe under/over-reach issues.
 - Measured impedance depends on both magnitudes and angle of fault infeed from two ends - subject to CBR control
- 2. Phase selection and others: also subject to CBR control

Assessment of Fault Level Required for Backup Earth Fault Protection

Backup earth fault protection characteristics

- t_{op} : relay operating time
- TMS: time multiplier setting
- I_N : relay detected neutral current
- I_{s_BER} :setting currents of backup earth fault relay

Earth fault protection requirements

Capable of detecting worst case scenario:

- Able to detect high resistance earth fault (100 Ω used in the study)
- Operate with required time delay

Assessment of Fault Level Required for Backup Earth Fault Protection

$$X_{S1_max_BER}^{+} = \frac{\sqrt{\left(\frac{3V_{S}}{I_{S_BER}}\right)^{2} - 300^{2} - 2X_{L}^{+} - X_{L}^{0}}}{(2+n)}$$

- V_S : system phase voltage
- X_L^+, X_L^0 : positive, zero-sequence line reactance
- *n* is the ratio between the zero, positive-sequence source impedance

Calculated Required Minimum Fault Level

 $FL_{min} = 318.3 MVA$

Key findings:

Earth fault protection can maintain dependability at very low fault level (i.e. 318.3 *MVA* @275kV).

RTDS Results

Modelling and understanding future trend of fault level (FL) in Scotland

Key findings

- Scotland already experienced very low FL.
- SGs closure in Scotland does not appear to have major impact FL locational effects
- Equipment outages can reduce the FL implications for system outage planning

What are the true system needs?

- FL is probably not the main issue (or the only issue), at least from protection perspective?
- FL needed for avoiding wide spread of voltage depression or other considerations?

Impact of Converter Control on Distance Protection Performance

Protection of Future Power Networks – Phase I

- Evaluation of inverters' impact on distance protection
- Closed-loop testing of physical relay performance under a wide range of conditions

D. Liu, **Q. Hong**^{*}, et al., Evaluation of HVDC System's Impact and Quantification of Synchronous Compensation for Distance Protection, *IET Renewable Power Generation*, 2022

Funded by:

hal

Strathclyde

Impact of Local and Remote-end Fault Level

Potential future extreme scenario $FL_{SG1} = 0 MVA, FL_{SG2} = 3000 MVA$

- Healthy Trip (<90ms)</p>
- Delay Trip (>90ms)
- Trip in False Zone
- No Trip

Observations:

- Current fault level relay responds correctly in majority of the cases.
- Small number of cases with delay and no trip – due to specific HVDC control deployed.
- When local fault infeed from SGI drops to 0MVA, i.e. only HVDC feeding the fault, clear change of protection performance.

Detailed investigation of studied cases

Issues of faulted phase selection (Relay I):

Cases	FL _{SG1}	FL _{SG2}	HVDC Mode	Fault Condition	Relay I	Relay 2
4	0 MVA	3000 MVA	BI	AG, 15 %, 2 ohm	No	Yes (100 ms)

Relay 2 (Sequence currents/voltages - based):

Sequence current-based phase selector:

Detailed investigation of studied cases

Issues of over-reach:

Cases	FL _{SG1}	FL _{SG2}	HVDC Mode	Fault Condition	Relay I	Relay 2
7	0 MVA	3000 MVA	BI	AB, 15 %, 2 ohm	No	Yes (43 ms)

Impedance locus measured by distance relays:

(a) impedance locus, (b) GTAO input currents, (c) phaseto-phase superimposed currents

Analysis of Case 7:

Phase currents from the converter with BI controller [1]:

$$i_p(t) = \sqrt{i_d^{+2} + i_q^{+2}} \sin\left(\omega t + \arctan\left(\frac{i_q^+}{i_d^+}\right) + \theta_{vd}^+ + \theta_p\right)$$

Impedance measured by distance relays:

$$Z_m = mZ_L + \left(1 + \underbrace{\left(\frac{i_{SG2}}{i_{HVDC}}\right)}^{A \angle \Delta \psi}\right) R_F$$

With different values of $\angle \Delta \varphi$:

Y. Fang, K. Jia, Z. Yang, Y. Li and T. Bi, "Impact of Inverter-Interfaced Renewable Energy Generators on Distance Protection and an Improved Scheme," in *IEEE Transactions on Industrial Electronics*, vol. 66, no. 9, pp. 7078-7088, Sept. 2019.

Detailed investigation of studied cases

Issues of oscillating impedance locus:

Cases	FL _{SG1}	FL _{SG2}	HVDC Mode	Fault Condition	Relay I	Relay 2
9	0 MVA	3000 MVA	BI	ABCG, 15 %, 2 ohm	Yes (468 ms)	Yes (50 ms)

Impedance locus measured

issues of relay

Analysis of Case 9:

Emerging Protection Solutions: Travelling Wave Revised Distance Protection

Travelling Wave (TW) - based Differential Protection

- TW-based protection provides a promising solution for CBR-dominated power systems:
 - Largely unaffected by converter control/converter type
 - Largely unaffected by the variation of system fault level
 - Fast operating speed

TW-based differential protection:

For internal faults :

- Initial current TWs of TWR1 and TWR2 have same polarity • $|\tau - \tau| < Time threshold$
- \circ $| au_2 au_1| < \text{Time threshold}$

Network Model for Travelling Wave Relay Tests

Model Explanation

I. The model is developed in sub-step environment with 4 μs step by NovaCor RTDS rack.

2. The transmission line is modelled using Frequency-Dependent Phase-Domain (FDPD) Line.

3. The serial inductor, L_{serial} , is to emulate the impacts of the transformer.

4. The length of adjacent line L_2 can be flexible tuned to emulate different scenarios.

Hardware in the Loop-based Systematic Tests

HiL systematic tests

- 300 cases in total
- Scripts and MATLAB codes developed for relay injection and results analysis

• Minimum Fault Inception Angles (FIAs)

Fault Type	Fault	Minimum FIA (°)
	Ι 0% , Ο Ω	6
AG	Ι 0% , 100 Ω	9
	Ι 0%, Ο Ω	2
AB	Ι 0% , 100 Ω	3
	Ι 0%, Ο Ω	2
ABG	l 0% , 100 Ω	3
	Ι0%, Ο Ω	0
ABCG	Ι 0%, 100 Ω	0

• Cases in systematic tests

Fault Parameters	Settings			
Faulted line	Line I			
Fault positions	10%, 50%, 90%			
Fault types and fault inception angles	AG: 5°, 6°, 7°, 9°,11°; AB: 1°, 2°, 3°, 4°, 5°; ABG: 1°, 2°, 3°, 4°, 5°; ABCG: 0°, 10°, 20°, 30°, 40°;			
Fault resistance	0 Ω, 25 Ω, 50 Ω, 75 Ω, 100 Ω			

Systematic Travelling Wave Relay Tests

Statistics of all tested cases:

(a) AG faults, (b) AB faults, (c) ABG faults, (d) ABCG faults

Observations:

- The minimum FIAs of AG and AB faults are 6° and 2° (faults tends) to occur in large FIAs).
- Protection sensitivity increases as fault resistance decrease and fault inception angle increase.
- Trip in all cases in ABG and ABCG faults

Impact of Fault Level

Fault Level Impact 1. Minimum FIAs (AG) $SCR_{Grid} = 2.5 (FIA_{min} = 6^{\circ})$ $SCR_{Grid} = 3 (FIA_{min} = 6^{\circ})$ $SCR_{Grid} = 4 (FIA_{min} = 6^{\circ})$ $SCR_{Grid} = 5 (FIA_{min} = 6^{\circ})$ 2. Minimum FIAs (AB) $SCR_{Grid} = 2.5 (FIA_{min} = 2^{\circ})$ $SCR_{Grid} = 3 (FIA_{min} = 2^{\circ})$ $SCR_{Grid} = 4 (FIA_{min} = 2^{\circ})$ $SCR_{Grid} = 5 (FIA_{min} = 2^{\circ})$

University of

Engineering

Strathclyde

Studied Cases:

Casa	SCR _{Grid}	Fault		TWs
Case		Туре	1175()	Trip?
B.I	2.5	AG	6°	Yes
B.2	3	AG	6°	Yes
B.3	4	AG	6°	Yes
B.4	5	AG	6°	Yes
B.5	2.5	AB	2°	Yes
B.6	3	AB	2°	Yes
B.7	4	AB	2°	Yes
B.8	5	AB	2°	Yes

Impacts of Converter Control

	Control Mode Impact						
	I. Minimum FIAs						
	$FIA_{CP}^{AG} = 6^{\circ}$ $FIA_{CP}^{AB} = 2^{\circ}$						
	$FIA_{CQ}^{AG} = 6^{\circ}$ $FIA_{CQ}^{AB} = 2^{\circ}$						
ıg	$FIA_{BI}^{AG} = 6^{\circ}$ $FIA_{BI}^{AB} = 2^{\circ}$						
	2. TW relay performance is						
	largely unaffected by the						
	converter control.						

Testing Results

Case	SCR _{Grid}	Control Mode	Fault Type	Fault Resistance (Ω)	FIAs (°)	Fault Position (%)	Trip
B.I	3	CP	AG	0 Ω	6°	10 %	Yes
B.3	3	CQ	AG	0 Ω	6°	10 %	Yes
B.4	3	BI	AG	0 Ω	6°	10 %	Yes
B.5	3	СР	AB	0 Ω	2°	10 %	Yes
B.7	3	CQ	AB	0 Ω	2°	10 %	Yes
B.8	3	BI	AB	0 Ω	2°	10 %	Yes

Impact of Transformer

Studied Cases:

Case	Line 2 Length	Fault Type	TWs Trip?
A.I	4 km	AG	Yes
A.2	0 km	AG	No
A.3	4 km	AB	Yes
A.4	0 km	AB	No

Performance of the Refined Distance Protection Algorithm

Conventional Sequence Currentbased Faulted Phase Selection Algorithm:

Healthy Trip False Tripping Zone

Revised Faulted Phase Selection Algorithm:

Performance of Converter Control Assisted Protection

Virtual Impedance-based Grid-Forming Control

 \Box GFM with virtual impedance-based FRT – Revised version based on [3]

[3] R. Rosso et al., "On The Implementation of an FRT Strategy for Grid-Forming Converters Under Symmetrical and Asymmetrical Grid Faults," in IEEE Trans. on Industry Applications, vol. 57, no. 5, pp. 4385-4397, Sept.-Oct. 2021.

Control voltage angle and magnitude at PCC Fault detector: Control signal 'S1', 'S2' and 'S3'

Normal condition:

Virtual impedance FRT Calculation the virtual impedance during faults by (1) to (3):

$$Z_{\nu_{f}} = \frac{E_{p} - |V_{min}|}{I_{max}} \qquad (1)$$

$$R_{\nu_{f}} = \frac{Z_{\nu_{f}}}{\sqrt{XR_{ratio}^{2} + 1}} \qquad (2)$$

 $L_{\nu_{-}f} = \frac{(XR_{ratio} \cdot R_{\nu_{-}f})}{\omega_{0}} \qquad (3)$

Inner control loop:

Largely suppress the initial transient currents during faults

Distance Protection with VI-based GFM

GFL with CC-based FRT (Grid Code) 4 GFM with VI-based FRT 2 X (Ω) Stage II Stage -2 -4 -2 7 0 2 3 5 -1 $\mathbf{4}$ 6 $R(\Omega)$ 200 GFL with CC-based FRT (Grid Code) GFM with VI-based FRT 100 $\Delta\psi(^{\circ})$ Stage ' tage II 0 $\Delta \psi$ = - 38.02° -100 0.2 0.4 0.8 0.6 0 t (s)

As no PLL was used in VI-based GFM, the oscillating impedance locus disappears with VI-based GFM

Oscillating Impendence Locus Issue:

• Faulted Phase Selection Issue:

Distance Protection with VI-based GFM

Under/Over-reach Issue:

Compared to GFL, the VI-based GFM can reduce the impedance measurement error

QUESTION?

Can we further control the angle difference $\Delta \Psi$ to 0° to fully remove the under/reach issues of distance relay?

Answer:Yes!

D. Liu, Q. Hong, A. Khan, A. Dyśko, A. Alvarez and C. Booth, Evaluation of Grid-Forming Converter's Impact on Distance Protection Performance, IET 16th International Conference on Developments in Power System Protection, 2022

Performance Validation

Case I

Converter Side

Case 2

Converter Side

in a subsection of the subsection of the

Iabc_M1_A Iabc_M1_B Iabc_M1_C

labc_M1_A labc_M1_B labc_M1_C Vabc_M2_A Vabc_M2_B Vabc_M2_C

labc_M2_A labc_M2_B labc_M2_C

Vabc_M2_A Vabc_M2_B Vabc_M2_C

L labc_M2_A L labc_M2_B L labc_M2_C Vabc_M3_A Vabc_M3_B Vabc_M3_C

Labc_M3_A Labc_M3_B Labc_M3_C

Vabc_M3_A Vabc_M3_B

labc_M3_A labc_M3_B labc_M3_C

Grid Side

Grid Side

-8

15

Conclusions

Reduced fault level:

- Fault level in Scotland already low, and do not seems to get significantly lower.
- The fault characterise (determined by CBR control) seems to have larger impact than magnitude

CBR control on protection performance:

- Existing control does not consider protection, can lead to risks of various protection failure.
- Impact on protection should be considered as part of control design.

Emerging solutions for protection of CBR dominated networks

Travelling Wave:

- Fast, largely unaffected by CBR control and fault level
- Need to consider transformer impact, communications etc.

Revised distance protection

- No need to replace existing relays
- Performance dependent on CBR control strategy

Protection Assisted by Revised CBR Control

- No need to replace existing relays
- Required coordination with different converter control objectives

Thank you!

Dr Qiteng Hong

Senior Lecturer/Associate Professor
Department of Electronic and Electrical Engineering
University of Strathclyde
99 George Street, Glasgow GI IRD, UK
T: +44 (0) 141 444 7275

- M: +44 (0) 74 111 55818
- E: <u>q.hong@strath.ac.uk</u>

