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The National HYDC Centre — About us

The National HVDC
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What am | going to talk about..

 Why should we be interested in '
this. -

 How can we understand &
address/ test the problem?

* Why we are interested in this?
 What are the options?

* NIA PSL-FC; what is it doing &
why.

* Why classical approaches to
Protection relays can
encounter problems?




So what'’s the problem? S -

Low network strength +’ High convertor penetration

|
CHALLENGE- Ability to capture converter behaviour

Low fault Wider range of Scale/
current fault current duration of
Injections injections injection

Phase of synchronisation
injection of injection

CHALLENGE- Ability to capture relay behaviour ~
A 4
Overcurrent relay performance (time/ Distance relay performance

operation) (discrimination/ reach/time/ mal operation) DUEIEEESS, @UE

: _ frequency
Unit protection protection

(tolerances/
injection
polarity)

Or- use a different approach to protection relays & systems!
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Why are we interested? 2

* Net Zero= transition to convertor
technologies (wind, solar,
batterles()g

 New af:)proaches to convertor
control, e.g. Grid forming.

* Increase in interconnection &
HVDC grid reinforcement.

« HVDC largest of convertor
Injections of fault current-
- What do we want these to do?
— HOW do We Want prote Ction to Figure 2: The new network needs identified through the HND. Figure 1: Those recommendations that have been identified as necessary previously.

p e rfo rl I I ? National Grid ESO, Holistic Network Design: https://www.nationalgrideso.com/document/262676/download

* By 2030 more convertors than

infrastructure

Solutions by Technology Type

typical demand. | oottt
* By 2030 as much Scotland- | Sttt e
England transmission via HYDC

as via AC

ility needs across GB electricity

Figure 2 Stability cB8 ity grid (Source: National Crid ESO)
NOA Stability Pathfinder | ESO (nationalgrideso.com)



https://www.nationalgrideso.com/industry-information/balancing-services/pathfinders/noa-stability-pathfinder

How to address/ understand this- | W CIgI pet

Understanding requires-

 RT-CHIL of system areas,
— Real protection devices,

— Real protection systems &
strategies

— Real converter behaviour,
— Real protection systems,
— Real performance.

Injected

Testing requires-
* Either the above,

(representing interconnection )

or e =
* A representative test bench Tt e | owolom  om
Informed by the above to test  ~TTTTTTT--—-ooo---F -l
the individual components © - T
If behaviour and performance Strathelyde THE D e—

need can be sufficiently distilled. (\ The National ., (-~ - o5

HVDC Centre
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Testing new solutions =S
* Open loop= testing the real I protectic
responses of relays to real . etatenea ab 0
system behaviour without the e 0 endo
relgiys Lhen acting on the I ( H = appro
network. ;;w“m‘u Lt ityengrce O,
B>t ] —
» Solutions less dependent on the | | 53 Y P :

magnitude and polarity of

 Solutions more complex with P2 A processes
greater dependency/ |
vulnerabilities, e.g. upon
communications

current g s E sty G
- % T A
b AT o a ' New testing approaches &

New Protection System
Options

New reliability indexes

* New performance criteria
— Additional tests
— Additional data for setting

* New overall protection systems
& philosophies
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NIA Protection solutions Project - what is it/ why are we doi g’ | i

* Previous work
Identified and MMC HVDC system implemented
""’:‘* weswsi:  with typical control strategies:

quantlfled prOte(_:tlon A — ! ———————— - @ * Balanced current control (including
risks to conventional i et - o various grid codes)
|E .,G : LB {>*‘ * Constant active/reactive power contro

resou rceS .l::'-’:"\:::‘ ' NSV ' 1 jromy NG _Garil . i i | 3
| IR o R i
* We now are using an oot gl '..gf,, S
Va1 e u{'.,"m“’ Representing different NSG penetration levels and
adap.ted teSt benCh : = ! system strength (thus fault levels).
WOrklng with UoS, .- "-L1 » Equivalent impedance of Z,,y and Z,. 3 .

* Rating of NSG_Grid and SC

SSEN and vendors to
explore and
demonstrate solutions

Two types of
commonly used Different levels of synchronous compensation (SC)
distance relays tested * Adjustable SC rating
» AVR controller
* Constant reactive power control
* Droop control
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NIA Protection solutions Project- Key Highlights. \ﬁe)
* We have simulated a E 3 e A
range of options Mzl

* We have identified an =y s =1
“open loop” :
demonstration location.

 We have now progressed
a range of teS.tS’.and > Distance Protection oo™
defined monitoring and , , , S
: » Neutral Current Differential Protection S~e.

are setting up for open
loop demonstration

Line Protection Schemes Planned :

» Line Differential Protection

» Travelling wave protection




Thank you!

7 agre

For power system expertise



AN
Ik
University of X

gl'e Strathclyde
/ CI Glasgow y

For power system expertise

Protection and Future Power Networks Dominated
by Converters: Recent Learnings on Challenges and
Potential Solutions

Dr Qiteng Hong

Senior Lecturer

University of Strathclyde
17/05/2023

UK UNIVERSITY
OF THE YEAR
FOR A SECOND TIME




Overview

Research Background -
Strathclyde

Engineering

Assessment of fault level required for
protection

Impact of converter control on
protection performance

Explored potential solutions

= Travelling wave protection

= Revised distance protection

* Refined control to facilitate protection
operation

Conclusions




Research Background
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* Rapid increase Converter-Based Resources (CBRs)

{
13-15kA
11-12kA
9-10kA
7-BKA
<7 kA

* Significant changes to system fault behaviour f
" Reduced fault level
= Control-dependent fault characteristics

* Risks of compromised AC protection performance

* Our research focuses on: o i

= Assessing impact of reduced fault level and CBR control
on protection performance

L
T

Synchronous
machine |

Current (pu)
|
Il
Il
Il
|‘
<?>
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=
=
= |
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1
hn
T

0.05 0 1 O 15 0.2 0.25 0.3
3Ph E- Fault HVDC Inst

WMJ@ Wﬂ&w o
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* Understanding causes for protection failure

* Developing new protection solutions/revising existing
protection algorithm for CBR dominated systems

Converter

Current (pu)
lb Lo =

= Refining CBR control to support protection

0.1 0.15 0.2 0.25 0.3
t(s)
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How Much Fault Level is Required for

Protection?
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Assessment of Fault Level Required for Differential 2

Universityof &

Protection B
Differential protection characteristics Differential protection requirements
Lyiry = |l + 1] To ensure dependability:
i 4
| K>
(CUI‘VG II ) St Xs1 S Xline Sls5le Xs2 S2
K1 * Ri=100 Q
(Curvel) r o _ nl+ L
, Ihias = I B
ISl |
0 |" ’l Capable of detecting worst case scenario:
S2 bias
* Single-end source with no pre-load
- I and L, are the secondary currents at two * Able to detect high resistance earth fault (100 Q

ends of the protected line used in the study)



Assessment of Fault Level Required for Differential

Protection

Differential protection zone:

| I;,c on Curve I: I = I,

2 Cs \% = [C5)\? C3C
Y, = C2X# +zclczxs+1—<( L)+ (2) e

1.2C, C4

2. [;

bigs ON Curve 2: I,

bias = 1,2

Y, = Clng"lZ + 2C;C X, — <(1 2(;6)2 ( ) fi:

Key observations:

3002 — sz> <0

— (2 —3002> <0

* The relations of ¥; and XJ;, Y, and XJ, are quadratic

* The maximum source impedance is the greater positive
solution of the quadratic curve, i.e. the minimum fault
level can be detected for differential protection

4Y1

N
Universityof &

Strathclyde

Engineering

4AY2

+

+
S1_max_Curve I XSl max_Curvell
—>

>
xa  \0 XS

Ligr = |1 + I

Idiff A

ls1

Kz
(Curve II')

K1
(Curvel)




Case Study for Differential Protection

275 kV Network
. Bus 2
Ziine=0.46+j5.03 Q I 77 Xse2

— '\/+——@
I \/I

_______ Rr=100 © /A

| No remote-end infeed

Calculated Required RTDS Results.

us r e,

AOCEN

s

1 Universityof &

| Strathclyde

Engineering

Key findings:

* |n networks only with SGs,

o S e differential protection can still
Minimum Fault Level 2 0 N S s .P
Pl 17447 MVA e o e e operate with very low fault level
e ' = T (e.g. I74AMVA @275kV).
= o02f
* Protection Settings .= o O |
"0 02 04 06 o085 1 * Angle of currents play a more
P o 025f - j ; ] . .
laift < o important role than fault level
"~ 02 - vastly different in CBR
0 0.2 0.4 0.6 0.8 1
= ] dominated networks.
Qg_g_ 0.6k (0.30, 1.2) |
"~ gat - - : : . l1+ 12 li+12
0 0.2 0.4 0.6 0.8 1 OnIy SGs - =
. \ ~
| | j >
0 2 Ibies 0 02 04 06 08 1 H |I1|+II2| with IBRs ~ Ilibllel It

: " :

2



Assessment of Fault Level Required for Distance

&
Universityof &

Protection Strathclyde

Engineering

L IR Bus B

mz. @mz | lzacl O' Key findings:

| Ri s | I. Impedance measurement:
= ; — —> — .
X ] "= Network only with SGs: small angle
@ difference £4Y.
Distance Relay = |BRs can increase £A4¥, and lead to the
* Impedance Measured by Distance Relay severe under/over-reach issues.
Az AW " Measured impedance depends on both
1 . .
Zy =mZ; + <1 + I—R} Re =27, + Zg magnitudes and angle of fault infeed
1 ‘L -
-z from two ends - subject to CBR
it XY 74 A1 control
,Z.E L l !
L/ Z Z 2. Phase selection and others: also
L i Ay .
2| ! Z subject to CBR control
X
Wil g R </ R




Assessment of Fault Level Required for Backup Earth

&
Universityof &

Fault Protection Strathclyde

Engineering

Backup earth fault protection characteristics i )
Earth fault protection requirements

»

top (S) A
0.14 S, x., BusA i Buls B e S,

top:TMSX( Iy )0-02_1 (O ————— — *| - —m——)

Is gERr Ri=100 Q
Standard

IDMT Curve

Capable of detecting worst case scenario:

* Able to detect high resistance earth fault (100

> Q used in the study)
In (A)

top: relay operating time * Operate with required time delay

TMS: time multiplier setting

Iy: relay detected neutral current
- I ppg ‘setting currents of backup earth fault relay




Assessment of Fault Level Required for Backup Earth .

Fault Protection lEmdyge
) === | 275 kV Network e :
Backup earth fault protection: 1SGL BB o ssoz B2 o~ ., SG2
I@—— | — | i/—V———@ |
I~ L l /‘ “ |
e \2 Rr=100 © e
( S ) ~3002-2x;" —X? No remote-end infeed
P _ Is BER =
Sl s BIER (2+n) Calculated Required Minimum RTDS Results
FaUIt Level 0.8 P‘L/(o.zl&o.%)
0.6
- ®
* Vs :system phase voltage FLyin = 318.3 MVA 204 , 02309
0.2 —IN
e X, X°: positive, zero-sequence . . 0 R
L AL-P 9 Key findings: 0 . !
line reactance Earth fault protection can N AR
* nis the ratio between the zero, maintain dependability at very z 3| |{ :
.. . £20f -
positive-sequence source low fault level (i.e.318.3 MVA -, |
1

impedance @275kV). '



Modelling and understanding future trend of fault level =

Universityof &

(FL) in Scotland Sl

24,000 —

27000 m 24/08/2021 (850 event)

20,000 m (4/04/2021 - Base Case for companson

18,000 m 04/04/21 wath worst case outages

ﬁ% m 04/04/21 with Tomess off

lli'l}I:H} 04/04/21 wath Tomess & Heysham1 off

10,000

5,000

5 h“ I ||“

2000y Il | “II "“ "I

5 B 5 B E E s 2 E 9
wﬁémmaﬁgﬁﬁgaéméa
Key findings What are the true system needs?
* Scotland already experienced very low FL. * FL is probably not the main issue (or the
* SGs closure in Scotland does not appear to only issue), at least from protection
have major impact FL — locational effects perspective!

* Equipment outages can reduce the FL - * FL needed for avoiding wide spread of

implications for system outage planning voltage depression or other considerations?
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Impact of Converter Control on

Distance Protection Performance




Protection of Future Power Networks - Phase | g";;;;v,;f;fe

* Evaluation of inverters’ impact on distance protection
* Closed-loop testing of physical relay performance under a wide range of

conditions

Case study: AC network near
Caithness-Moray HVDC Link

ATEER,

Engineering

________________________

BRORA DUNBEATH

)SHIN

r___l.

—— —
[72]
=

i' ALNESS

-

D. Liu, Q. Hong*, et al., Evaluation of HYDC System’s Impact and Quantification of Synchronous Compensation for Distance Protection, IET Renewable

Power Generation, 2022
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1
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1
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RTDS Benchmark
Network Model

MYBSTER

Caithness-Moray
HVDC Link

Funded by:

f \ The National

\. 4 HVDC Centre

S

Line 2: Equivalent Line HVAC

(representing interconnection) Equivalent

Bus B SG2

|
|

|

|

|

|

Line 1: Overhead Line Under Zeg: |
Investigation :
—————————————— — |
o |

|

|

|

|

|

|

|

|

[ L Tz {>
Fault -

|
: Low Voltage Digital
| Input/Output Interface Panel NSG_Grid

| Distance Relay

Scottish & Southern
Electricity Networks




Impact of Local and Remote-end Fault Level

ATUEN
University o %
Current fault level Potential future extreme scenario ESt_rat_yhfclyde
FLesy = 1832 MVA, FLgg, = 1372 MVA  FLggy = 0 MVA, FLgg, = 3000 MVA ;
(T T T T T \ (T T T T T T T T T T T T T T T T >

Relay | (All Fault Cases)

¢~

= Not Trip = Delayed Trip

| Relay | (All Fault Cases)
1
|
1
|
1
|
1
|
1
|
1
= Trip in False Zone = Healthy Trip | ‘
1
|
1
|
1
|
1
|
1
|
1
|
1
|

B Healthy Trip (<90ms)
B Delay Trip (>90ms)

B Trip in False Zone

B No Trip

y/

= Not Trip * Delayed Trip

Observations:

* Current fault level — relay

|
I
|
I
|
I
|
I
|
I
|
I
|
" Trip in False Zone  Healthy Trip : responds correctly in majority of
|
I
|
I
|
I
|
I
|
I
|
I
|
I

Relay 2 (All Fault Cases) Relay 2 (All Fault Cases)

the cases.

1% 5%

e Small number of cases with delay

and no trip — due to specific
HVDC control deployed.

*  When local fault infeed from SGI
drops to OMVA, i.e. only HYDC
feeding the fault, clear change of
protection performance.

/

N

= Not Trip © Delayed Trip

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| = Not Trip = Delayed Trip
|

= Trip in False Zone = Healthy Trip = Trip in False Zone = Healthy Trip

- o o o o O O O e e e e e e e



Detailed investigation of studied cases

Issues of faulted phase selection (Relay 1): 7
Universityof &
Cases FLggq FLg;, HVDC Mode Fault Condition Relay | Relay 2 Strathclyde
Engineering
4 0 MVA 3000 MVA BI AG, |5 %,2 ohm No Yes (100 ms)
Relay | (Superimposed currents - based): Relay 2 (Sequence currents/voltages - based):
. Impedance locus
4 5
3t ¥
12
2 F (AGBCG)
lo
1 5
o 'S
< Of
1t ;
” 1.5} ] A?ab
2 F ~ — — — — — 4 —— Al
& 1] be . v A
= h_ Ai el | g (ABABG) (ce. ABC) gl
3k % 05} I] ca |I :
5 : =1.22A
4 F < 0 -w.--i__r_AjthI‘ 5 || °:
- : : : : |
-2 0 2 4 6 0 0.5 1 [ |

R () t(s)
(a) (©)

(@) impedance locus, (b) GTAO input currents, (c) Ph-
Ph superimposed currents




Detailed investigation of studied cases
Issues of over-reach:

University of

Cases FLggq FLg;, HVDC Mode Fault Condition Relay | Relay 2 Strathclyde

Engineering

7 0 MVA 3000 MVA Bl AB, 15 %,2 ohm No Yes (43 ms)

Impedance locus measured by distance relays:  Analysis of Case 7:

' ' ' ' ' ' Phase currents from the converter with Bl controller [1]:

4 | — Impedance locus
S, (2) _ | L®= \/i;{ +1ig " sin (wt + arctan (&) + 05, + Hp)
Hl 1 Impedance measured by distance relays:
L _ AN
1 1 1 1 1 1 1 1 1 1 I i A I
-2 -1 0 1 2 3 4 5 6 7 7 = SG2
=mZ, +\ 14 ( )' R
R (Q) L L I lgvpc/l F
200 . — @ . ST
With different values of ZA:
S 100 4 X A l JX 4 I 25/7 X 4 I
N I ) Ze o | /
< OF ] ZE
P A wz -82 .63 (0) mZc mZ.
100 , L . . Zn Zm mZL
0 0.2 0.4 t(s) 0.6 0.8 1 B B Zn B
(b) / > - -

(@) impedance locus, (b) GTAO input currents, (c) phase- -
Y. Fang, K. Jia, Z. Yang, Y. Li and T. Bi, "Impact of Inverter-Interfaced Renewable Energy Generators

tO-Phase supe r‘imposed currents on Distance Protection and an Improved Scheme," in IEEE Transactions on Industrial Electronics, vol. 66,
no. 9, pp. 7078-7088, Sept. 2019.



Detailed investigation of studied cases

Issues of oscillating impedance locus:

University of

Cases FLggq FLgg, HVDC Mode Fault Condition Relay | Relay 2 2Ei|l:gll':inthlyde
9 0 MVA 3000 MVA BI ABCG, 15 %,2 ohm Yes (468 ms) Yes (50 ms)
Impedance locus measured Analysis of Case 9:
st Locus of ABCG Fault ABCG fault occurs
/
_ 2 = L / \ \ 7 A\ 4
S Stage 11
= O e 3-ph voltage reduces significantly
2 F
B L Compromised PLL
S 2 3 4 5 6 7
R () performance
(a)
200 . : ; Angle AY l
Oscillated current
s~ 100 f -
< Stage I % angle of converter
a ,l ;
A and impedance
'1000 0.2 04 () 0 0.8 1 locus oscillation
S
(b) !
(a) impedance locus, (b) angle difference of current infeed Zone discrimination

from both ends of the protected line issues of relay
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Emerging Protection Solutions:

Travelling Wave

Revised Distance Protection




Travelling Wave (TW) - based Differential Protection

/AN
Sl
Strathclyde
Engineering

University of

* TW-based protection provides a promising solution for

CBR-dominated power systems:

" largely unaffected by converter control/converter type

" Largely unaffected by the variation of system fault level
" Fast operating speed

* TW-based differential protection:

qu M Bus N

— ML (m)L——] @ For internal faults :
@ 1 o Initial current TWs of TWRI| and TWR2

have same polarity
o |t, — 71| <Time threshold




Network Model for Travelling Wave Relay Tests

Red circuit - 275 kV DOUNREAY

Gordonbush,_, Connagill

Strathbrora —ax— |

________________________________

CASSLE “: 7777777 jﬁj % % Linel - 275 kv ',, g pup—— i
BRORA DUNBEATH -
LAIRG —(JsHN WETER Real network data

Fyrish g aithness-Moray Conflgu ratlon
| ALNESS

HVDC Link

Real-Time Simulation in Substep
Environment

Bus B Bus C

AA
____________ GFL with Flexible

Control
++ | 1——FL ——————————————————

| Tripping Signal ||
to RTDS | v (*

GTAO @ & GTFPI GTFP @ GTAO

Vo, Vo Ve lll = ! ) £ 11Va Vs Ve

SE I
Ial JC“ 5 | I **Ia, IC

Universityof &

Strathclyde

Engineering

Model Explanation

|. The model is developed in sub-step

environment with 4 us step by
NovaCor RTDS rack.

2. The transmission line is modelled

using Frequency-Dependent Phase-
Domain (FDPD) Line.

3. The serial inductor, Leorig;, is to
emulate the impacts of the
transformer.

4. The length of adjacent line L, can be
flexible tuned to emulate different
scenarios.
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Hardware in the Loop-based Systematic Tests Sirathlyde

Engineering

BusB _ _ BusC

BUSA ™|, Line1-12.0km I Vjy Line2 | i i
o |amz. oz e | Hoe L Yoo [T HiL systematic tests
—7 T =T, 300 cases in total
AC Grid e L= : | :
! ! Grid-Following O Scripts and MATLAB Fodc.-:'s
TW TW Converter developed for relay injection and
Relay 1 Relay 2 .
results analysis
*  Minimum Fault Inception Angles (FlAs) * Cases in systematic tests
Fault Type Fault Minimum FIA (°) Fault Parameters Settings
AG 10%,0 0 6 Faulted line Line |
10%, 100 9 — —
AR 10%, 0 Q ) Fault positions 10%, 50%, 90%
10%,100 Q 3 AG:5,6,7,9,11;
ABG 10%. 0 Q , Fault types and fault AA;Z 1;) 2;2 3;,0 4;,0 55,
oo H t’ I :o ’ o’ ’O ’ . ’ .
10%, 100 & 3 D ABCG:0,10,20,30,40;
ABCG 10%, 0 Q) 0
10%, 100 Q 0 Fault resistance 00,250,50 0,75 Q, 100 Q
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Universityof &

Systematic Travelling Wave Relay Tests Strathclyde

Engineering

Observations:

* The minimum FIAs of AG and AB
faults are 6 and 2~ (faults tends
to occur in large FlAs).

« Statistics of all tested cases:

Number of Corrected Trips
N
Number of Corrected Trips
N

: : * Protection sensitivity increases as
0 . 9 geQ. ? 3 .
s FaRassarce @) 5 fault resistance decrease and fault
au esistance (b) . . .
g s 2 wr v inception angle increase.
g g . * Trip in all cases in ABG and ABCG
5, RS o O faults
E " om ma me W me 1;%\;\\‘@6?\\0 § Y om mm se me o T :0\00&\00
Fault Resistance (Q) Fault Resistance (Q) §°
(©) (d)

(@) AG faults, (b) AB faults, (c) ABG faults, (d) ABCG faults




- Em - o oy,

Impact of Fault Level Fault Level Impact
———————————————————————————————————— ~, |-Minimum FlAs (AG) DG

N BusB _ PUS C o Universityof N&
ZB“S AL 90%)%6 1- 112001/ Em .|l Line2 L AT | SCRgrig = 2.5 (FIA i = 6) ESt.rat_hgclyde
ac _— N L1<_ serial trans I . ngineerin
e e e i 21T 1 SCRaria =3 (FlAny = 6)
. I - | S
SCR;,iqg =4 (FIA,,;,, = 6
AC Grid | Grid-Following ! ria = * (Fldmin =6 )
s Converter : SCRgrig =5 (FIA i = 6)
N Rely1] — |Rey2) _/ 2. Minimum FlAs (AB)
A gﬁ%g&fé; SCRgrig = 2.5 (FIApmin = 02 )
=0 SCRgria = 3 (FlAmin = 2)
o SCRgria = 4 (FlApin = 2°)
20 | SCRgrig =5 (FIApin = 2°)
10 | |
I .
o \/ _ | Studied Cases:
«» - Case B.1 « - Case B.4 Fault TWs
N O O O Y R R - O O R Y Case SCRGTid FIAs (o) .
40 50 60 70 80 90 100 110 t(us) 410 420 430 440 450 460 470 480 490 t (us) Type Trlp?
i 28 (WP, [ B.I 2.5 AG 6: Yes
w0l o — TWR2 B.2 3 AG 6 Yes
30 | 25.92 B.3 4 AG 60 Yes
| s | B.4 5 AG 6 Yes
| oE | B.5 2.5 AB 2° Yes
0 — o
10 l 10 b I B.6 3 AB 2 Yes
»Case B.5 » - Case B.8 B.7 4 AB 2° Yes
I O B - Lo - B8 5 AB 2° Yes

390 400 410 420 430 440 450 460  t(us) 410 420 430 440 450 460 470 480 490 t (us)
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Impacts of Converter Control Control Mode Impact Strathclyde
|. Minimum FlAs B
___________ BusB _ _ F FIAAG = §° FIA2B = 2°
ZBUSA:—Il>(1LinZell2-lzkm<|2_} . TO CP CpP
ac -m)Z.1 mZu seria G AG _ o FIAAB —2°
@ "e = T T T LT, HlAcg=6 cq
AC Grid L o e AL AG _ o0 AB
| | Grid-Following FIAg] = 6 FIAgY =2
Relay 1 Roly 2 comverier 5 TW relay performance is
largely unaffected by the
. converter control.
Testing Results
Control Fault Fault FIAs Fault :
Case | SCRria Mode Type Resistance (Q) (°) Position (%) Trip
B.1 3 CP AG 0Q 6 10 % Yes
B.3 3 CQ AG 0Q 6 10 % Yes
B.4 3 Bl AG 0Q 6 10 % Yes
B.5 3 CP AB 0Q 2° 10 % Yes
B.7 3 CQ AB 0Q 2° 10 % Yes
B.8 3 Bl AB 0Q 2° 10 % Yes




Impact of Transformer

___________________________________ ~ \2J
', __________ EUS;_B_ . _BUS C \ Universityof <&
l BUSA™ ", Tine1— 12,1 km_l.__ || Line2) ! Strathclyde
| 90%7Z.1 10%Z.1 Lseriar Xirans J\ | O | Engineering
! | =T, !
=0Q I - °
I AC Grid ! acoge | I Studied Cases:
I FIA=90 Lo . . I
: L = | Grid-Following : . > =
T i Converter ine ault
\ R R | Case TWs Trip?
R L R4 Length Type
) Al 4 km AG Yes
b pmowen — TWRIL A — TWRL 2 0 G
100 e — TWR2 100 — TWR2 A. km A No
n | I n
s0p | 12 291.74 a00 L Case E.2 | 209,62 A3 4 km AB Yes
200 Case El 200 ~e Magnitude reduced | A4 0 km AB No
100 100 ¢ Distorted waveform |
) . / : \ Busbar
100 100 - | _—
i Incident Transformer
-200 -200 W
| | | | | | | | > | | | | | | | | | > | e—
770 780 790 800 810 820 830 840 t (us) 890 900 910 920 930 940 950 960 970 t (us) é +
i At=31.768 us < — TWRI1 A — Fault
s00 L WD — TWR2 800 - — TWR2 Reflected
600 — 582.128 |537 811 600 CaSe E4 535.564 T™W
' I
400 17 | 400 o Magnitude reduced /| —
200 : : Case E3 200 — e Distorted waveform/ | — Meausred
/ [ T\ —_—
0 0 TW
I
200 - 200 |~ | Fault occurs — transformer characteristic impedance increases
400 + -400 I Zo—7
LY L significantly — [} = 22 ==“"T ~ —1 — TWs cancellation
> > Iin Zc"'ZT

900 910 920 930 940 950 960 970  t(us) 460 470 480 490 500 510 520 530 540 t(us)



Performance of the Refined Distance Protection
Algorithm
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Conventional Sequence Current- Revised Faulted Phase Selection
based Faulted Phase Selection Algorithm:
Algorithm:

N

4

® Healthy Trip DI = Healthy Trip = Failed Trip
" False Tripping Zone DleeleyEe Ul = False Tripping Zone = Delayed Trip (Z1)
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Performance of Converter Control

Assisted Protection
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Virtual Impedance-based Grid-Forming Control
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1 GFM with virtual impedance-based FRT — Revised version based on [3] Normal condition:
ettt S ee - Control voltage angle and magnitude
I Equivalent AC at PCC
Source | :
I | Vabe labc _-L
| @—I: — ——( () — o pH T
| Zowee | Zine Z A T Ly Fault detector:
o el ”______' ________________ | Control signal ‘S1’,‘S2’ and ‘S3’
B P wo |, Sy I Virtual Impedance I Inner Control Loop |
I | Il I o .
:—> @—I—a: . I Implementation ] lo | Virtual impedance FRT
: X I _. | ! I, e ot ide | | Calculation the virtual impedance
______ I i 5| Nowen | - .

: v —[PI | r S21 76 EX |: 1 i¥ :: Lj} > 100 Hzigr | Scale down : durlng faults b)’ (|) to (3)
| | I da0 T R +sLv i Iey) /dq0 "| the current |i
i L2 0| /el i i Z, ;=2 ()
: — 1 R tsL. —»:: by the : - Imax
I x 1V _ i .+ | calculated
| Grid-Forming Control - abe ‘jﬁ Ii : e i»:i i PO Notch "1 factor in 4 | Ry, r = Zvf (2)
| (Normal Condition) v, Ry +sLv i = oo | 100 Hz [y, i XRZa410t1
e e e e i Wiy prarurn peprarn puersrey |
| lpec ' . idp | ig-p|ian| igN XRrqtio R
: ?’Active power :i ______ 6_ ------------- - q------i--: Lv_f = (mz—ov_f) (3)
| »| calculation : | w : 0
' [ |
| |
: :i E, 5 - | DuaI_Sequence ;Vabc |nl1el‘ COI‘ItI"Ol |00p:
| Estimation of | |+ Itd Sl ) R @9l B nner Current Controller | Largely suppress the initial transient
: | Lositive sequence ,| Fault detector| 55~ |, Momin| calculation | | )
| P que vH<09pu?s3 1! | basedon(2) ! I currents during faults

voltage magnitude | | Imax I |
[ 1 —> and (3) 1 |

[3] R.Rosso et al,, "On The Implementation of an FRT Strategy for Grid-Forming Converters Under Symmetrical and Asymmetrical
Grid Faults," in IEEE Trans. on Industry Applications, vol. 57, no. 5, pp. 4385-4397, Sept.-Oct. 2021.

\/(i:i—P)z +(i<*;—P)2 +\/(i<*1—1v)2 +(i2—1v)2

Imax

SF =

(4)



Distance Protection with Vl-based GFM
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Oscillating Impendence Locus Issue: Figiessilg
] ' ' ' GFL with CC-based FRT (Grid Code) | - .
4 , GEM with VI-based FRT  Faulted Phase Selection Issue:
7| / [ =l v ] ] L
~~ \
g . —| 2 el T —,
~ 0F < Hl iy ” \% =0 1 TiiTlTITj IR
N - m Iill“ 'u IC “Iﬂ Mivuhk i‘"“"llllll‘llr c
ot ' 02 03 1o 02 03
0 0.5 1 0.2 04 06 08 1
40 1 1 1 1 1 1 1 1 ' 5 p Al b 10 e Al
=L a - ab
2 1 0 1 2 3 4 5 6 7 = ."":.8 it Ayl e AP —— ar_
e If " + i
R (Q) :‘] o :}‘l FP& 025 &Ica :'1 0 :wﬁh 0.25 ﬂ‘Ica
. L Iy 111y
200 T T T T 5 = " [ §
GFL with CC-based FRT (Grid Code) "0 0.5 10 0.5 1
GFM with VI-based FRT =3l I | [ AL®MS)| T 4 —-J_ | AL (RMS)
100 s 7 = ——I- b = L_L )] AL
‘S - ~. ZIRN: m o (RMS)| 7 —— Al _(RMS)
:;T}/ Stage I,/ ~\\§tage ” é &ICQ(RMS] 5 2 : H_\ &I _(RMS)
< 0k / — -3 30 &J-QRH-S —T T = - I AL (RMS)- 301A
i 0 0.5 1 0 0.5 1
j"( t (s) t (s)
100 02 04 0 08 1
. . 6 .
t(s) AG fault detected as a AG fault detected
As no PLL was used in Vl-based GFM, the oscillating ABCG fault with GFL correctly with VI-

impedance locus disappears with VI-based GFM based GFM



Distance Protection with Vi-based GFM
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e Under/Over-reach Issue:

GFL with CC-based FRT (Grid Code)

4r GFM with Vi-based FRT
/ L] eoretical Impedance Value 7
A a— e QUESTION?
S
= O
Ll Can we further control the angle
(0.89,-0.76) . 2
4p s difference AY¥ to 0 to fully remove the
-2 -1 0 1 2 Q3 4 5 6 7
R . .
o under/reach issues of distance relay?
200 ' GFL with CC-based FRT (Grid Code)
GFM with VI-based FRT
~100 | ]
2 Answer:Yes !
<
or & Ap=-3825° I
4 Ay=-8181°
-100 ' E ' ' '
0 0.2 0.4 t(s) 0.6 0.8 1
(b) D. Liu, Q. Hong, A. Khan, A. Dysko,A. Alvarez and C. Booth, Evaluation of

Grid-Forming Converter’s Impact on Distance Protection Performance,
Compared to GFL, the Vl-based GFM can reduce the IET 16 International Conference on Developments in Power System Protection,

impedance measurement error 2022
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Conclusions
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=  Fault level in Scotland already low, and do not seems to get significantly lower.
"=  The fault characterise (determined by CBR control) seems to have larger impact
than magnitude

1 CBR control on protection performance:
= Existing control does not consider protection, can lead to risks of various protection failure.

"= |mpact on protection should be considered as part of control design.

d Emerging solutions for protection of CBR dominated networks

Travelling Wave: Revised distance Protection Assisted by Revised
* Fast, largely unaffected protection CBR Control
:ay (fBR control and fault . NC? n.eed to replace *  No need to replace existing relays
eve existing relays  Required coordination with
* Need to consider \
cransf . . * Performance dependent different converter control
ranstormer impact, on CBR control strategy al5ieE e
communications etc. ]
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