

Pole Defect Image Detection Model

Emerson Smith 06/12/2024

Contents

Project Benefits

Pole Image Requirements

Proposed Solutions

Image Recognition Models on GCP

Training and Testing the Models

Defects to be Investigated

Potential Challenges and Limitations

Business Integration

Other Uses of Image Recognition Models at National Grid

Acknowledgements

Project Benefits

- Pole defects could mean customers are off supply
- Helicopters patrol the network to identify defects
- Helicopters are more efficient for patrolling the network than foot patrols
- Defect detection model could improve workforce resilience and be more accurate than a human observer

Pole Image Requirements

- Images of pole defects are recorded
- Images of poles without defects are stored amongst images of overhead lines
- An image recognition model will be required to isolate images of poles for the defect detection model

Proposed Solutions

	Local Python Development	Data Analytics Platforms	Google Cloud Platform (GCP)
Cost	None for development but potentially costly deployment	Subscription cost	Pay-as-you-go pricing model
Prebuilt Models	None	Inbuilt image recognition model	Prebuilt models
Processing Capabilities	Low	Medium	High
Scalability	Harder to scale up	Harder to scale up	Easy to scale up
Customisation and fine- tuning	Highly customisable	Less customisation	Moderate customisation

Google Cloud

Image Recognition Models on GCP

- AutoML Image Classification can be used for detecting poles in images
- Visual Inspection AI can be used for detecting defects

Cloud AutoML Vision

Training and Testing the Models

- Train, validation and test datasets required
- Change parameters iteratively to improve accuracy
- Training time, accuracy and cost will need to be considered

Train Data (70%)		Validation Data (15%)	Test Data (15%)	
Model	Minimum Image Requirements	Target Image Requirements		
AutoML Image Classification	100 images of poles, 100 without poles	1000 images of poles, 1000 witho poles	ut	
Visual Inspection Al	10 images with defects and 10 without or 20	100 images with defects and 100 without or 1000		
	without defects	without defects		

Defects to be Investigated

HPO (Pole/Tower damage)

IC (Insulator Damaged / Defective)

IB (Defective Binder/ Stirrup/ Suspension Clamp/ Preform)

TI (ivy on pole)

Potential Challenges and Limitations

- Image quality
- Some defects may be too small or unclear
- Rarity of some defects
- Perspective of images

Business Integration

Other Uses of Image Recognition Models at National Grid

Thermal Image of a Pole

The Inside of a Link Box

Labelled Image of a Meter

Acknowledgments

- Paul Hartshorne (Head of Data)
- Ryan Kavanagh (Data Science Manager)
- Simon Richards (Helicopter Observer Team Lead)

Email: <u>esmith1@nationalgrid.co.uk</u>

LinkedIn: linkedin.com/in/emersonsmith22

