

Measuring and understanding the residual inertia of demand and embedded generation - The Great Britain case study

By: Dr. Sung Pil Oe, Head of Power Systems

About Reactive.

We enable grid operators to measure grid inertia to accelerate the transition to a low-carbon grid.

250+ patents globally

1st and <u>only</u> proven direct, real-time grid stability management service

ISO27001 certified

6-year commercial service contract underway

BGF

equinor

TOSHIBA

BloombergNEF

TRANSPOWER

national**gridESO**

AEMO

Supported by...

Breakthrough

res

Energy

Powerina Business Worldwide

accenture

Context – Low-inertia Systems

Transmission system operation becomes more challenging due to volatile frequency and RoCoF.

system inertia levels is needed to safely and efficiently operate low-inertia systems. Measuring inertia allows the optimization of inertia dispatch and frequency response procurement.

Inertia Measurement Methodology

¹*Modulator*: an asset such as a battery, ultracapacitor or load bank capable of generating a power signal ²*XMU*: eXtensible Measurement Unit, Reactive Technologies' GPS synchronized accurate measurement unit.

Inertia Measurement Methodology – GB deployment

technologies

Container houses ultracapacitor cells and modules, control system, cooling system, fire detection and suppression

GB Inertia Measurement – Event Based Validation

Date	Power Imbalance [MW]	Inertia Measurement [GWs]	Inertia Estimation [GWs]	Percentage difference [%]
29/04/22	1028	308	321	-4,05
30/04/22	1028	298	308	-3,25
19/07/22	1027	260	262	-0,69
19/07/22	1027	266	288	-7,47
20/08/22	646	177	172	3,26
22/08/22	490	208	210	-1,00
05/09/22	1031	233	255	-8,56
05/09/22	-642	283	281	0,64
07/10/22	-400	216	209	3,74
16/11/22	-418	177	185	-4,42

GB Inertia Measurements dataset overview

Note: 96.4% of the time measurement is within \pm -20% of estimate Note: 71.0% of the time measurement is within \pm -10% of estimate

Residual Inertia General Trend

Thank You!

Dr. Sung Pil Oe, Head of Power Systems, Reactive Technologies Ltd (UK) <u>sungpo@reactive-technologies.com</u>

Info@reactive-technologies.com www.reactive-technologies.com