## Improve operations with AI/ML Powered Analytics

Jack Wilkins September 2023



Agenda







Aspen Technology may provide information regarding possible future product developments including new products, product features, product interfaces, integration, design, architecture, etc. that may be represented as "product roadmaps or product visions".

Any such information is for discussion purposes only and does not constitute a commitment by Aspen Technology to do or deliver anything in these product roadmaps or otherwise.

Any such commitment must be explicitly set forth in a written contract between the customer and Aspen Technology, executed by an authorized officer of each company.

## Technology Stack - Fitting Tools to Challenges





### Analytics begins with a Data Foundation



### **Key functions**

- Aggregate process data across the enterprise with cloud scalability
- Visualization and Analysis with a modern, web and mobile environment
- Vendor-neutral connectivity for end-to-end data collaboration
- Contextualize operational data across the entire enterprise
- Analyze alarm & event data for patterns and predictive outcomes

### Value drivers for utilities

 $\bigcirc$ 

- Improved process understanding
- Ability to manage data from multiple sites allowing for operational comparisons
- Flexibility of implementation with growth avenues from small to large scale cloud
- Secure data storage and retrieval
- Built in reporting and analysis improves regulatory compliance evaluations
- High availability in redundant mode

### Integrating OT & IT Data Repositories for Analytics





## **DERMS Battery Management and EMS/GMS**





### Forecasting of renewables and battery management



k device to show summary

SERV XEMR-21

SUB XFMR-

### Detailed modeling of battery resources

- Physical parameters
- Smart inverter operating modes
- Contractual limitations on use

#### Real-time monitoring of battery assets

#### Automatic dispatch for local control objectives

- Solar + storage management
- Point of Interconnection loading control
- Substation peak shaving/backfeed avoidance

# Optimal scheduling of real-power for local objectives

Manual scheduling for enabling operating modes
 Integration with GMS for remote dispatch
 Market integration through GMS

| Name/ID       |            |            | T              | уре                        |             | Latitude       | e Longitude    |          |
|---------------|------------|------------|----------------|----------------------------|-------------|----------------|----------------|----------|
| DER 72        |            |            | 5              | itorage/Batte              | ery         | 32.9483        | 34 65.896668   | Dev      |
| Output        | P (kW)     | Q (kVAR)   | V (V)          | I (A)                      | Desired     | I Source       | Actual Source  | Тур      |
| Actual        | 0.00       | 0.00       | 0.00           | 0.00                       | SCADA       | -              | SCADA          | Co       |
|               |            |            |                |                            | Last        | Updated        | Last Chec      | Reg      |
| Ramp Rate     | 0.00       |            |                |                            | 11/17/22    | 14:14:56       | 03/07/23 15:11 | I:50 Are |
| Nameplate     | Limits (   | Operationa | l Limits       |                            |             |                |                | Sul      |
|               | P (kW)     | Q (kVAR)   | V (V)          |                            | DI          | 01.1           |                | Fee      |
| Maximum       | 9.00       | 0.75       | 120.00         |                            | Phase       | e Status       |                | Ser      |
| High Limit    | 8.10       | 0.97       | 120.00         |                            | A En        | ate<br>ergized |                | Use      |
| Low Limit     | -8.10      | -0.97      | 0.00           |                            | B En        | ergized        |                |          |
| Phased        |            |            |                |                            | C En        | ergized        |                |          |
| A             | 0.00       | 0.00       | 0.00           | 0.00                       |             |                |                |          |
| В             | 0.00       | 0.00       | 0.00           | 0.00                       |             |                |                |          |
| С             | 0.00       | 0.00       | 0.00           | 0.00                       |             |                |                |          |
|               |            |            |                |                            |             |                |                |          |
| Battery Actua | al Values  |            |                | Batter                     | y Scheduli  | ng Paran       | neters         |          |
| Current Cana  | city (kWh) | 2 4        | 3              | Enable                     | e Target S( | C              |                |          |
| Maximum Ca    | pacity (kW | ,<br>)0    | Target SOC (%) |                            |             | 0              | Dat            |          |
| Current SOC   | (%)        |            | Throu          | Throughput per Cycle (kWh) |             |                |                |          |
| Minimum SO    |            |            |                |                            |             |                |                |          |
| Maximum SC    | DC (%)     |            |                |                            |             |                |                |          |

| Data Source Info | Links     |
|------------------|-----------|
|                  | Customer  |
| SCADA            | One-line  |
| Bellwether       | Мар       |
| Meteorology      | Documents |
| Battery          | Controls  |
| Forecast         | Schedule  |
|                  | Economics |
|                  |           |

### Maintain DERs using Predictive Analytics



Challenge: Reduce cost and effort to maintain campus solar farm.

Solution: Use cloud-based predictive analytics to forecast inverter fuse failures and panel degradation.

- Process begins with storing raw data from SCADA system in a cloud based operational datastore.
- Review and cleanse data.
- Build and train model.
- Apply model to real-world data.



### **Improve Asset and Production Effectiveness**



### Autonomous Asset Agents

- Monitor assets in the context of their usage to provide the earliest possible warning of asset damage and failure
- Enables Engineers to rapidly build autonomous agents that protect assets
- Provides precise prescriptive guidance for mitigating alerts
- Self-learning, adapting over time
- Compliments existing workflows and helps **optimize business processes**

Avoid unplanned downtime by identifying the earliest possible indicators of potential asset damage and failures using machine learning



Sensors "on and around equipment" ensure agents alert root cause of issues

### Agents Do Things That Others Cannot and Do Not



See things earlier Months vs. days (more time for investigation and planning)



Analytics to predict when maintenance is unavoidable

See things they cannot To prevent process-induced damage



Analytics to prevent operations activities from causing equipment damage – "do no harm"

Attach failure to root cause In EAM system for both O&M guidance



Prescriptive: integrates digital work-scope from work order systems. You know what's wrong and how to fix it

AGENTS KNOW HOW TO STOP EQUIPMENT FAILING



- Decrease Customer outages by improving Equipment Availability and Reliability
- Reduce Operating Expenses by eliminating over maintenance and excess spare parts
- Reduce Safety and Environmental Incidents by transforming Emergency work into Planned work

### **Data Exploration**

### Cigre For power system expertise

#### Opportunity

- Allow custom data pre-processing
- Support more advanced exploratory data analysis
- Enable growing data scientist persona at our customers

#### **Business Value**

- Additional flexibility: Support custom use cases
- Better user experience with less context switching

| 💭 jupyter                                                                                                                                  | ai-wo  | orkflow 1         | .ast Checkpoir                 | nt: 06/21/2022 | ? (unsaved cl | hanges)  |          |          |          |          |                          |          |              | 0              | Logout   |
|--------------------------------------------------------------------------------------------------------------------------------------------|--------|-------------------|--------------------------------|----------------|---------------|----------|----------|----------|----------|----------|--------------------------|----------|--------------|----------------|----------|
| File Edit                                                                                                                                  | View   | Insert            | nsert Cell Kernel Widgets Help |                |               |          |          |          |          |          |                          |          | ted          | Python 3 (ipyk | ernel) O |
| 8 + % 8                                                                                                                                    | 5 6    | <b>^</b>          | ▶ Run                          | C ₩ Co         | de            | ~        |          |          |          |          |                          |          |              |                |          |
|                                                                                                                                            | std    | 5.8/9064          | 4786 160220                    | 5.901080       | 19.26/6/4     | 0.098877 | 0.092126 | 0.012248 | 0.008215 | 2.702392 | 610.927790<br>196.687721 |          | 0.015724     | 19.26/6/4      | 2        |
|                                                                                                                                            | 25%    | 12.698465         | 2046.491811                    | 16.954700      | 44.901735     | 0.148765 | 0.640430 | 0.055795 | 0.003495 | 3.437380 | 598.350299               |          | 0.029912     | 44.901735      | 2        |
|                                                                                                                                            | 50%    | 15.000000         | 2593.595713                    | 20.034700      | 62.362730     | 0.180000 | 0.747390 | 0.065880 | 0.008590 | 5.000000 | 958.409505               |          | 0.036780     | 62.362730      | ŧ        |
|                                                                                                                                            | 75%    | 18.666695         | 3213.814129                    | 25.687140      | 73.673785     | 0.293000 | 0.781185 | 0.073645 | 0.016080 | 7.327605 | 1421.335108              |          | 0.050008     | 73.673785      | ;        |
|                                                                                                                                            | max    | 27.781410         | 4394.994017                    | 30.187110      | 91.837260     | 0.314670 | 0.895050 | 0.083430 | 0.024050 | 9.361240 | 2183.150438              |          | 0.065866     | 91.837260      | ٤        |
|                                                                                                                                            | 8 rows | × 23 colum        | nns                            |                |               |          |          |          |          |          |                          |          |              |                |          |
| <pre>In [10]: import matplotlib.pyplot as plt  plt.figure(figsize=(15, 6))  plt.plot(df_raw_data['Pressure Drop'], '-o')  plt.show()</pre> |        |                   |                                |                |               |          |          |          |          |          |                          |          |              |                |          |
|                                                                                                                                            | 27.5   |                   |                                |                |               |          |          |          |          |          | Å                        |          |              |                |          |
|                                                                                                                                            | 25.0   |                   |                                |                |               |          |          |          |          |          | _/ \                     |          |              |                |          |
|                                                                                                                                            | 22.5   |                   |                                |                |               |          |          |          |          |          |                          |          |              |                |          |
|                                                                                                                                            | 20.0   |                   |                                |                |               |          |          |          |          |          |                          |          |              |                |          |
|                                                                                                                                            | 20.0   |                   |                                |                |               |          |          |          |          |          |                          |          |              |                |          |
|                                                                                                                                            | 17.5   |                   |                                |                |               |          |          |          |          |          |                          |          |              |                |          |
|                                                                                                                                            | 15.0   |                   |                                |                |               |          |          |          |          |          |                          |          |              |                |          |
|                                                                                                                                            | 12.5   |                   |                                |                |               |          |          |          |          |          |                          |          |              |                |          |
|                                                                                                                                            | 10.0   |                   |                                |                |               |          |          |          |          |          |                          |          | $\mathbf{I}$ |                |          |
|                                                                                                                                            |        | 30 13:00 30 13:05 |                                |                |               |          |          |          |          |          |                          | 30 13:10 |              |                |          |

### **Power Grid Congestion Management**

### Opportunity

- Autonomous balancing of power transmission grid
- Alleviating congestion in network by topologic switching
- Assist grid operator by proposing action

### **Business Value**

- Combine topologic switching with traditional measures
- Improve the grid resilience and reduce costly measures
- Identify under-utilized, cost-effective flexibility in the network





## Distribution grid balancing using quantum computing



VISION

#### Opportunity

- Build awareness to validate opportunities and readiness
- Explore new use cases based on combinatorial problems
- Identify strong technology partners

### **Business Value**

- Exponential acceleration of compute possible
- New applications based on combinatorial problems

#### **Exponential Acceleration**









*Target: find the best combination of active capacitors* 

## Predictive transformer monitoring at the edge

### Opportunity

- Include asset health monitoring in operational insights
- Enable distributed transformer monitoring close to the device
- Consider transformer health in decisions e.g., switching

### **Business Value**

- Enhanced operational insights with predictive maintenance
- Lower costs when using available, distributed compute
- Increased grid robustness by considering asset health





## Alarm Analytics and Prioritization

#### Opportun<u>ity</u>

- Reduce response time by prioritizing and grouping alarms
- Identify alarm patterns and correlations for root cause analysis
- Automatically recommend
  possible corrective actions

#### **Business Value**

- Enhance operational efficiency by focusing on the most critical issues first
- Improve decision-making by clarifying the alarm root causes
- Save cost by identifying and addressing high priority alarms swiftly





Closing



### Leverage the variety of tools

- Open Source
- Vendor specific applications

### Proven data repository

- Highly scalable
- High performance

### Explore your data

- Opens new methods to transform data
- Cloud based services provide elastic compute resources

### Think outside the box

- Revisit legacy challenges
- Deliver increased business value

# Thank You

