

CIGRE-UK A2|D1 - Research Dissemination

Development of Thermal Models for Grid Transformers with Tertiary Windings Connected to BESS

Prepared by : Dr. Song Yang (song.yang@manchester.ac.uk) Date : 28th November 2024

Contents

- 1. Background
- 2. Modified IEC thermal model
- 3. Multi-component CFD model
- 4. Conclusion and outlook

1. Background

- Tertiary windings of super grid transformers in transmission networks provide a costeffective and efficient connection solution for Battery Energy Storage Systems (BESS).
- It's important to understand the impact of BESS connection on the transformer's thermal performance requiring development of an effective three winding thermal model.

Pivot Power's 50MW BESS in Oxford, UK, 1st tertiary connection to grid Available at: <u>https://www.edf-re.uk/news-and-views/pivot-power-wartsila-and-habitat-energy-activate-50mw-transmission-connected-battery-in-cowley-oxfordshire/</u>

Diagram of Tertiary connection to BESS

2. Modified IEC thermal model

The Diagram and equation of IEC thermal model

Modified model with four figures

MANCHESTER 1824 The University of Manchester

7 day loading data for single SGT connected to BESS

Top-oil temperature

MANCHESTER 1824

Hot spot temperature and Cooling mode for three windings

3. Multi-component CFD model

A super-grid transformer module (one phase)

Weidmann Electrical Technology, Transformerboard III, H. AG, Rapperswil, Switzerland, 2022

CAD model of SGT (one phase in quarter)

Components and dimensions of SGT

13

The University of Manchester **Two separate components**

MANCHESTER 1824

Component 2: Winding domain (2D axisymmetric)

MANCHESTER

Step 1: Initialization (2D model computation)

Outputs:

- Inlet and Outlet velocities
- Outlet temperatures
- Wall temperatures

Inputs:

- Inlet and Outlet pressures (estimated)
- Inlet temperatures (initialized to T_{∞})
- Heat transfer rate on inner/outer walls (initialized to zero)

15

[CIGRE-UK A2|D1]

16

19

Step 2: coupling method

MANCHESTER 1824 The University of Manchester

Step 3: Iteration (2D-3D model computation)

[CIGRE-UK A2|D1]

Oil flow temperature (Comp 1) & HST (Comp 2)

degC

96

Conclusion and Outlook

- The IEC dynamic thermal model (DTM) was modified by incorporating features of dual-cooling mode, tertiary connection, temperature-dependent resistance, and tap-changer numbers.
- A multi-dimensional CFD model has been preliminarily developed to thoroughly analyze the thermofluidic behavior and hotspot temperatures of three windings.
- To complete the CFD model and utilize the numerical simulation results to validate and further refine the modified DTM