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BlackEnergy Attack in Ukraine Power Grid
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Consequence:

v’ 225,000 consumers disconnected for 1-6
hours

v Constrained operations for months
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* Is there anything the defenders can still do at this stage?

Monitoring

Area * Is this the worst damage if the attackers get to this stage
(and one of them is a power engineer)?



Imperial College
London Is it possible, by controlling a small part of the

system, to cause a system-wide blackout?

- Physics-aware Intelligent Cyberattacks Manipulated load: 5% in Area 2
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Chu,and, Teng. Mitigating Load-Altering Attacks Against Power Grids Using Cyber-Resilient Economic Dispatch, IEEE TSG, 2022
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- Control/operational perspective of intelligent cyber attack

Physical Power System
— Actuator x = f(x,u) »| Sensor |— Stage During Event
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Can we maintain the “minimum” physical functionality of the : T

Prolong the propagation time

power grid against intelligent attacks by developing more from cyber to physical
intelligent decision-making?
@ Availability Integrity Confidentiality
(delay and dropout) (corruption, forging) (observation)
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Energy System

Fast cyber-physical recovery:

- Restore cyber functionality while
maintaining physical functionality
- Coordinate electricity, transport

and communication networks

A Defence-in-Depth Strategy for Cyber Resiliency of

Identification (Section IV)

v Threat Modeling:
Adversary/Vulnerability/Atta
ck Models

v Risk Assessment: Risk
Matrix, Success Likelihood,
Attack Impact

N

/
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Recovery (Section VIII)
v Cyber: Comm. Reconnection,
Malware Removal, Forensic

“CyberSafe” operation mode:

- Ride through cyber degradation'\ 7

Recovered
Performance,
Lessons Learned

the system recovers

- Coordinate control/operation
flexibility for mode transition ——

- Adapt according to attack _

Mitigation (Section VII)

v Cyber: Packet Dropoff, Traffic
Block, Channel Switch, ...

v’ Physical: Compensation-based,
Isolation-based, Scenario-
based, Adaptive-based,
Schedule-based

information availability
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damaged components 5 Resiliency Assessment \- Protection, Operating Point
v Knowledge: System Dynamical Dispatch, Virtual DER device
Behaviour, System Flexibility
Maintained

v’ Metrics: How fast and low the system Preventative
performance drops, How promptly aten
Capabilities,
Detection Support

Attack Type,
Occurrence
Time and
Location

6—-

Critical Vulnerable
Paths inducing
Safety Hazard

Prevention (Section V)
v’ Cyber: Network Segmentation,
Access Control, Encrypted
Communication, Code-signing

Blending Data and Physics
for Proactive Cyber Attack
Detection:

Detection (Section VI)
v Cyber: HIDS, NIDS
(Signature/Anomaly-based)
v Physical: PIDS (Data-
driven, Model-based, Data
and Model Blended)

- Hunt the attackers
- Achieve high detection

without false alarms

- Inform mitigation strategies
6

Liu, Teng, et la, Enhancing Cyber-Resiliency of DER-based Smart Grid: A Survey, TSG
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Blending Data and Physics
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Xu, Higgins, Teng Blending Data and Physics Against False Data Injection Attack: An Event-Triggered Moving Target Defence Approach, IEEE TSG, 2023
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London How to keep the light on under a major cyber intrusion?

Mitigation Strategies
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Ge, Teng. Cyber-Resilient Self-Triggered Distributed Control of Networked Microgrids Against Multi-Layer DoS Attacks. IEEE TSG, 2022.
Chu, Teng Mitigating Load-Altering Attacks Against Power Grids Using Cyber-Resilient Economic Dispatch, IEEE TSG, 2023
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Cyber Resiliency - Attack Mitigation:
A “CyberSafe” Operational Mode

CyberSafe operation ag?inst Load Altering Attacks
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Chu and Teng. "Mitigating Load-
Altering Attacks Against Power
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Economic Dispatch." IEEE Trans.
Smart Grid, 2022
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Cyber Resiliency — Cyber Recovery:

Linking Electricity, Transportation, and Communication

» General process of cyber recovery
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Liu, Chu, Teng, Cyber Recovery from Dynamic Load Altering Attacks: Linking Electricity, Transportation, and Cyber Networks, TIFS, under review
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Identification (Section IV)

v Threat Modeling:
Adversary/Vulnerability/Atta
ck Models

¥ Risk Assessment: Risk
Matrix, Success Likelihood,
Attack Impact

/

Recovery (Section VIII)
¥’ Cyber: Comm. Reconnection,
Malware Removal, Forensic

Recovered
Performance,
Lessons Learned

Paths inducin

We need to go beyond the cyber

Analysis :’:;
security mindset to develop a ] -~ ;
holistic and end-to-end cyber domaged componens e

v’ Knowledge: System Dynamical
Behaviour, System Flexibility

resiliency framework for the future

Safety Hazard

N\

Critical Vulnerable

g

Prevention (Section V)

¥ Cyber: Network Segmentation,
Access Control, Encrypted
Communication, Code-signing
Software Update

v Physical: Robust Control, Meter
Protection, Operating Point
Dispatch, Virtual DER device

Maintained v Metrics: How fast and low the system Preventative
= Performance, performance drops, How promptly s
powe r g ri d ! Recovery Plan the system recovers Capabilities,

[
)

Detection Support

Mitigation (Section VII)

based, Adaptive-based,
Schedule-based

v Cyber: Packet Dropoff, Traffic |Attack Type,
Block, Channel Switch, ... Occurrence

v Physical: Compensation-based, | Time and
Isolation-based, Scenario- Location

(——

Liu, Teng, et la, Enhancing Cyber-Resiliency of DER-based Smart Grid: A Survey, TSG,

Detection (Section VI)
v Cyber: HIDS, NIDS
(Signature/Anomaly-based)
v Physical: PIDS (Data-
driven, Model-based, Data
and Model Blended)
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