Clean Power 2030: Power system stability Challenges

Dr Xiaoyao Zhou, NESO

- Operates and balances the system
- Provides electricity network recommendations
- Operational planning
- Connection agreements
- Widens access and promotes competition
- Responsible for GB transmission charging and billing

NESO (National Energy System Operator) from Oct 2024

The **transmission operators** (TOs) own, build and maintain Britain's transmission infrastructure.

3

NESO's Zero-carbon operation ambition

Fossil fuelled generation is reducing fast, causing operational challenges

- Frequency management
- Inertia and voltage control

Our plan for 2025:

For short periods we can operate the transmission system carbon free and can accommodate all the zero carbon generation the market provides

Our plan for 2035:(Now 2030)

- Zero carbon operation all the time
- Manage new challenges of flexibility and adequacy

Notable records

 92.2% zero carbon April 2024

CLOSED

BY 2025

POWERED

- 19gCO2/kWh April
 - 2024

NFSC

Public CP30 NESO advice

The Government has an ambition for Britain to be supplied with clean power by 2030. The Government has made Clean Power one of their five missions. Mission Control, led by Chris Stark, is overseeing the delivery of a clean power 2030 action plan, consistent with long-term net zero, security of supply and affordability objectives.

The National Energy System Operator was asked to provide independent advice on the pathway towards the 2030 ambition, with expert analysis of the location and type of new investment and infrastructure needed to deliver it. We submitted our advice to Government and published it in November 2024. Government will now consider the advice in developing its clean power action plan later this year.

CP30 Headline Findings

- Clean power by 2030 is achievable though outer edge of feasibility. It will be a herculean
 effort
 - .Required capacity less than that in current connections queue.
 - Network requirements broadly in line with 'Pathway to 2030' Holistic Network Design (2022) need to deliver.
- Clean power will require doing things differently, establishing and maintaining momentum every year to 2030
 - Key elements for success: demand and supply flexibility, renewables acceleration, delivering FOAK technologies, timely network expansion, gas stays on but operates much less.
 - Key areas for action: planning reform; connection reform; market reforms; community engagement; supply chain; data/digital; and regulatory approvals.

Clean power can bring benefits for GB

- Help meet carbon targets and create local industrial and job opportunities
- Cut the link with gas prices, without increasing costs to consumers

Broad stakeholder support for analysis

CP30 NESO advice

	Installed Capacities (GW)		
Technology	2023	2030 Further Flex and Renewables	2030 New Dispatch
Offshore wind	14.7	50.6	43.1
Onshore wind	13.7	27.3	27.3
Solar	15.1	47.4	47.4
Nuclear	6.1	3.5	4.1
Biomass/BECCS	4.3	4.0	3.8
Low carbon dispatchable power	0	0.3	2.7
Other renewables	4.7	5.7	5.7
Batteries	4.7	27.4	22.6
LDES	2.8	7.9	4.6
Interconnectors	8.4	12.5	12.5
Unabated gas	37.4	35.0	35.0

How GB system evolves

Public Operability Challenges

Decarbonisation of the GB power system has resulted in changes in four key areas:

Each of these changes brings about new engineering challenges which have to be resolved to operate a zero carbon network.

- **Frequency** As more non-synchronous generation connects, system inertia lowers requiring faster acting response. More variability in the system requires fast acting reserves. Large and small loss sizes require services which respond dynamically to the frequency.
- **Stability** More non-synchronous generation is reducing the levels of stability capability provided to the network. To ensure the system is stable for faults on the network, services to provide inertia and short circuit levels need to be procured.
- Voltage Less dispatchable generation and changes to network flows brought about by generation moving away from demand is increasing the requirements to absorb reactive power on the GB network.
- Thermal More variable sources of generation combined with generation moving to different areas are creating more thermal constraints on the network requiring more innovative solutions to manage congestion prior to network build
- Resource Adequacy the right generation mix, flexible demand and storage
- Flexibility what, where and when can we leverage flexibility
- System Restoration how do you restart a renewable dominated system

8

System Performance Trends

•

Decline of system inertia

Inertia vs Demand

- Generally the maximum inertia now is lower than the minimum inertia was in 2009
- Average inertia provided by the market (pre-NESO actions) in 2023 to date is 180GVA.s

Decline of Short Circuit Level

Public

GB Grid Forming Grid Code Development

GB Grid Forming Development

Great Britain Grid Forming Best Practice Guide April 2023 ESO

GCDXXX Submitted: DD MONTH YEAR

GUUX	XX:	Modification process & timetable TBD	
GB Grid	Forming		
(GBGF) - capability			
mandate clarity on			
definitions changes to			
nerformance			
requirements and			
changes to			
complia	nce tests and		
modification a Grid Code in	also aims to update the respect of the Grid		
Forming requ the Great Brit Practice Guid comments, iii gained from t work / Compl development: Status summ develop recor	irements arising from i) tain Grid Forming Best (e, ii) Stakeholder) the industrial experience he Stability Pathfinder lance Process, iv) s in Europe. mary: The Proposer will be mmendations ahead of a form	setting up an Expert Group which aims to rmal Grid Code Modification.	
Forming requ the Great Brit Practice Guid comments, iii gained from t work / Compl development: Status summ develop recor This modific	irements arising from i) tain Grid Forming Best (e, ii) Stakeholder) the industrial experience he Stability Pathfinder iance Process, iv) s in Europe. mary: The Proposer will be mmendations ahead of a for ation is expected to have	setting up an Expert Group which aims to rmal Grid Code Modification. • a: High impact	
Forming required for the Great Brit Practice Guid comments, ill gained from t work / Compl development: Status summ develop record This modifice Manufacturer Owners.	irements arising from i) tain Grid Forming Best le, ii) Stakeholder) the industrial experience he Stability Pathfinder lance Process, iv) s in Europe. mary: The Proposer will be mmendations ahead of a for ation is expected to have s, Generators, the ESO, T	setting up an Expert Group which aims to rmal Grid Code Modification. • a: High impact ransmission Owners, Offshore Transmission	
Forming requ the Great Brit Practice Guic comments, iii gained from t work / Compl development: Status summ develop recor This modific Manufacturer Owners. Modification Planning, Sys	irements arising from i) tain Grid Forming Best le, ii) Stakeholder) the industrial experience he Stability Pathfinder iance Process, iv) s in Europe. nary: The Proposer will be mmendations ahead of a for ation is expected to have s, Generators, the ESO, T drivers: Harmonisation, N stem Security, Net Zero	setting up an Expert Group which aims to rmal Grid Code Modification. • a: High impact ransmission Owners, Offshore Transmission lew Technologies, System Operability, System	
Forming requ the Great Brit Practice Guic comments, iii gained from t work / Compl development: Status summ develop recor This modific Manufacturer Owners. Modification Planning, Sys Proposer's Proposer's	irements arising from i) tain Grid Forming Best (e, ii) Stakeholder) the industrial experience he Stability Pathfinder iance Process, iv) s in Europe. mary: The Proposer will be mmendations ahead of a for ation is expected to have s, Generators, the ESO, T drivers: Harmonisation, N stem Security, Net Zero Standard Governance mo	setting up an Expert Group which aims to rmal Grid Code Modification. a : High impact ransmission Owners, Offshore Transmission lew Technologies, System Operability, System dification with assessment by a Workgroup	

ESO

Stability Pathfinder

•

14

Stability Pathfinder

Stability Pathfinder

Public

	Stability Pathfinder	Stability Pathfinder	Stability Pathfinder	
	Phase 1	Phase 2	Phase 3	
Requirement	Inertia and dynamic voltage GB wide	Inertia, SCL and dynamic voltage	Inertia, SCL and dynamic voltage	
Status	All Synchronous	5 GFM BESS	29 Synchronous	
	compensators	5 SynComp	compensators	
	most units now live	Go-live from Apr 24	Go-live expected from 2025	
Participating technology	0MW Synchronous Compensators only	Synchronous and Grid Forming Converter based	Synchronous and Grid Forming Converter based	
Procurement regions	GB wide	Scotland	England and Wales	
Procurement	12.5 GW.s of inertia	8.4 GVA of SCL	7.5 GVA of SCL	
volume		6 GW.s of inertia	15 GW.s of inertia	
Contract Detail	Up to 6 years	End of Mar 2034	End of Mar 2035 £1.35b	
Contract	Availability payments for SCL& Inertia			
payments	Utilisation payments for reactive power			

https://www.neso.energy/industry-information/balancing-services/network-services-procurement/stability-network-services-procurement

16

Public Stability Market Design Overview

- To maintain compliance and reduce costs associated with managing stability, we are conducting an innovation project with AFRY to explore designing new markets to procure stability services. More details can be found <u>here</u>.
- Phase 1 concluded in 2022 and recommended that a blend of long and short-term competitive procurement is the optimal approach.
- Phase 2 concluded in 2023 built on Phase 1 and provided more detailed evaluation of eligibility rules, contract structure and procurement strategy.

		Long Term (Y-4)	<u>Mid Term (Y-1)</u>	Short Term (D-1)
Purpose		 Procure capacity in advance (LT), to signal the need for new assets Allow financing of new build capacity (and enhanced capability, TBD) through LT contracts 	 Procure capacity in advance (MT), to adjust LT procurement in case necessary Allow MT financing of new, incremental and existing capability able to provide stability 	 Procure capacity to fulfil residual of total requirements for Stability closer to real time (ST) Allow remuneration of marginal costs for providing Stability.
L	Procurement lead time	- Y-4	- Y-1	– D-1
Timeline	Contract duration	– 10+ y	– 1 y	- Service windows
	Contract type	- Baseload availability	- Baseload availability	– 4 h (EFA blocks)
Product	duct Contract – e.g. 90% availability	- e.g. 90% availability	- 100% availability	

Sub-synchronous Oscillations in GB System

Emerging Sub-synchronous Oscillations

Ş

- On 24th August, 2021, severe voltage disturbances were observed on the transmission system in Scotland
- The major disturbances lasted 20-25 seconds on two occasions, approx. 30 minutes apart
- Voltage oscillations of ≈8 Hz, up to ±35 kV at 400 kV
- Centred in north of Scotland, though impacted Central Belt

Public

2023 SSOs: What happened

During June and July 2023, 8Hz Sub-synchronous Oscillation (SSO) occurred on five separate days, all centred in the Scottish network. The SSO was in the range 5 – 9Hz, mainly at about 8Hz (approximately 1/6th of 50Hz nominal frequency)

The SSO events caused disturbances on the power system which included the tripping of generation, tripping of an interconnector and HVDC link, and in one case a transmission circuit trip.

The NESO initiated defensive measures and started an investigation after the first event. A dedicated project team was established after the second event.

The project team led the investigation, coordinated the response across NESO and managed communication with relevant parties.

The most likely cause of the SSO was identified in mid-July. The project team was stood down on 24th July 2023 and responsibility for concluding work transferred back to the relevant teams.

Changes have been made and there have been no further undamped SSO events in 2023.

Public Real time monitoring and alarms in frequency domain

NESO National Energy System Operator

Compliance process review

- The oscillation assessment guidance was published recently as the result of SSO investigation.
- The guidance describes a set of small signal studies which should be carried out by Users as part of the connection compliance process to demonstrate good damping performance.
 - Step change
 - Small signal injection study
 - Frequency scan
 - Eigenvalue analysis

22

EMT modelling improvement

- Grid Code modification: to obligate the existing Users to submit EMT models
- Development of EMT simulation portal : to allow users to connect to portal and carry out studies without access to sensitive IP data

Thank You!

Questions?

