From Concept to Current

The Impact of DACCS on the Energy Landscape

CIGRE UK, Technical Webinar, 19th March 2025

DACCS = Direct Air Carbon Capture & Storage

Your presenters today

Alex Middleton

Business Manager

Siemens Energy SE GS D AGT A65-A45 PM

Sabrina Mercer

Head of Strategy UK&I

Siemens Energy SE EU UK&IE

Vijay Shinde

Grid Expert

Siemens Energy SE EU M&BD RT E

March 2025

Siemens Energy is a global leader in energy technology

~1/6
of global electricity generation is based on our technology.

100,000

employees work as a team to energize society.¹

We are present in

>90 countries.

We invest around

€1.2bn annually in research and development.

1 Number of employees as of December 31, 2024 March 2025

What we are going to cover today

Why DACCS?

March 2025 Source: <u>The Keeling Curve</u> (maintained by Scripps Institution of Oceanography at UC San Diego)

Why DACCS?

March 2025 Source: <u>The Keeling Curve</u> (maintained by Scripps Institution of Oceanography at UC San Diego)

The Problem:

450 ppm CO_2 in the atmosphere is too much for the climate, but not enough to make Direct Air Capture easy or affordable.

Why DACCS?

Achieving Net Zero Targets

Offset emissions from hard-to-abate sectors

Flexible demand

Reduce curtailment by up to 30TWh by 2050

Minimal Land & Water Usage

Less resource required compared to other carbon removal methods

How to use DACCS:

In tandem with other technologies.

Not in place of other efforts.

Global Net Zero Targets

Net Zero?

- National Grid definition:
 "the balance between the amount of greenhouse gas (GHG) that's produced and the amount that's removed from the atmosphere"
- "can be achieved through a combination of emission reduction and emission removal"

* Negative emissions offset residual (positive) emissions, resulting in little Carbon Dioxide Removal (CDR) and drastic and immediate emission reductions

Unrestricted | A. Middleton, S. Mercer, V. Shinde 10

March 2025

Global Net Zero Targets

Net Zero?

- National Grid definition:
 "the balance between the amount of greenhouse gas (GHG) that's produced and the amount that's removed from the atmosphere"
- "can be achieved through a combination of emission reduction and emission removal"

* Greater (positive) emissions result in larger Carbon Dioxide Removal (CDR) and higher overshoot before the temperature increase declines to 1.3°C–1.4°C in 2100, still with drastic CO2 emission reductions in the next two decades

Unrestricted | A. Middleton, S. Mercer, V. Shinde 11

March 2025

Carbon Dioxide Removal

Direct Air Capture 101

Direct Air Capture 101

March 2025

DACCS Energy Intensity

- ~2,000kWh/tCO₂ removed
- 2 DAC Technologies
 - Thermal-based
 - 80% Thermal
 - 20% Electrical
 - Electrified
 - 100% Electrical

0.3 TWh/yr By 2035 10-30TWh/yr By 2050

UK DACCS Demand

- Various by organization / scenario constraints
- NESO Future Energy Scenarios (FES)
 5-15 MtCO₂e by 2050
- UK Climate Change Committee (Balanced Pathway – CDR not feedstocks)
 - 0.15 MtCO₂e by 2035
 - 8 MtCO₂e by 2050

Unrestricted | A. Middleton, S. Mercer, V. Shinde 15

March 2025

What does DAC mean for Electricity Grids?

~1 to 3GW installed capacity to meet projected CO₂ removal by 2050 in the UK

Distribution connected plants, to kick off the industry

Other aspects

- · Land availability,
- Environmental planning
- Grid connection

Huge potential

- Co-locate with renewable energy projects facing grid constraints
- Demand side response
- Business case future?

Financial Incentives

Project support, e.g. guaranteed pricing mechanisms, tax credits; first-of-a-kind support; emissions accounting standards

Infrastructure Development

Strategic planning of CCS infrastructure & reduction of delivery times

Regulatory Frameworks

Streamlining the approval process for DACCS projects to reduce delays and uncertainties

This isn't new

Research & Development

Dedicated funding for R&D to drive innovation and cost reductions

International Cooperation

Standardize DACCS practices & accelerate deployment

Raising the money for energy infrastructure

Summary

DAC in a nutshell

Grid implications

Policy environment

- ~2,000kWh / tCO₂ removed
- **5-15MtCO₂** / yr by 2050 in UK; 980MtCO₂ / yr globally
- 10-30TWh needed from electricity by 2050 (UK, electrified DAC)
- Distribution connected to kick off
- Huge potential to co-locate with renewable energy projects facing grid constraints
- Can be useful for demand side response
- DAC viability depends on making the economics work
- Support for first-of-a-kind projects & rapid scaling
- Negative emissions have value: Robust carbon pricing mechanisms & accounting standards

Thank you for your attention!