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Power system dynamics under increasing uncertainty and complexity



• Power systems are dynamic nonlinear systems
– Arguably one of most complex man-made systems
– Up to hundreds of differential equations

• Numerical integration methods – simulations
– Timescales from <ms up to tens of seconds
– Computationally intensive

Power system security under increasing complexity and uncertainty

Increasing Complexity Increasing Uncertainty

• Very different dynamic behaviour of new technologies 
and high number – need for detailed models

• Power electronic interfaced (wind, solar, batteries, HVDC 
links, electric vehicles, electrolysers)

• Smaller timescales – faster dynamic phenomena
• Governed by control
• Strong nonlinearities – limiters, discrete control

• Millions of devices (solar PV, wind farms, batteries, EVs)

• “Exploding” search-space of possible operating 
conditions 

• Intermittent energy sources and social behaviour
• Billions of cases if we want to do exhaustive search
• Affecting operational and planning timescales

Power system dynamic studies
• Machine learning and data-driven methods

• increased visibility, enhanced control, decision support, 
automation

• Security, reliability and resilience improvement
• Understanding and mitigating widespread events

• Maximise integration of low/zero carbon technologies
• Cost efficient manner (“dynamics- aware” optimisation)

Dynamics increasingly important 



Power System dynamics under increasing 
complexity and uncertainty

§ Modelling and representation of dynamics
– Characterise systematically mechanisms of instability

– Importance of investigating multiple operating conditions and understand sensitivities - data-
driven and probabilistic approaches

– Appropriate modelling frameworks (EMT, EMT-RMS, dynamic phasors, hybrid modelling)

§ New types of dynamic phenomena and oscillatory interactions
– Control governing dynamic behaviour and challenges with black-box vendor models (grid forming 

converters)

– Fundamental understanding: what mechanisms, under what conditions, in which locations, what 
devices – this includes non-linear/hybrid dynamics

– How to mitigate? – damping control, discrete control modes (e.g. for weak grid), sync. comp., 
operational constraints – services

§ Impact on system stability (transient, voltage and frequency)
– Complex impact with respect to location, control parameters, etc.
– Not straightforward to understand critical operating conditions and faults – nonlinear 

dynamics
– Low inertia and locational aspects more pronounced

Canada, Hydro One 
(20 Hz, PVs, current control) [2]

Australia, AEMO 
(19 Hz, PVs, PLL-shunts) [2]

[1] U. Markovic, O. Stanojev, P. Aristidou, E. Vrettos, D. Callaway and G. Hug, "Understanding Small-Signal Stability of Low-Inertia Systems," IEEE Trans. Power Syst., vol. 36, no. 5, pp. 3997-4017, Sept. 2021.
[2] L. Fan et al., "Real-World 20-Hz IBR Subsynchronous Oscillations: Signatures and Mechanism Analysis," IEEE Trans. Energy Conversion, 2022, doi: 10.1109/TEC.2022.3206795.
[3] Luke Benedetti, Alexandros Paspatis, Panagiotis N. Papadopoulos, Agustí Egea-Àlvarez, Nikos Hatziargyriou, “Investigation of grid-forming and grid-following converter multi-machine interactions under different control 
architectures,” Electric Power Systems Research, Volume 234, 2024, 110813, https://doi.org/10.1016/j.epsr.2024.110813.

https://doi.org/10.1016/j.epsr.2024.110813


Dynamics and modelling needs for Active Distribution Networks

• Active Distribution Networks
– Lack of situational awareness and equivalent model parameter sensitivity
– Data-driven methods for extraction of representative parameters
– Electric Vehicles (and Heating) changing the mix and dynamics of load 

(uncertainty due to social behaviour)

• Renewable generation and Electric Vehicles
– Typical dynamic load model structures might not be adequate

• Interaction and services at the interface with transmission
– How can we confidently procure services from distributed resources 

(generation, EVs, flexible demand) without activating constraints
– Providing aggregation information to the ESO for dynamic studies

Typical profiles for a) load, b) wind, c) PVs

CCT for a typical day, modelled with and without 
accounting for ADN

EV responses for different control parameters

[1] I. S. Lamprianidou, D. Tzelepis, P. N. Papadopoulos, A. Oulis Rousis, “Impact of Active Distribution Networks on Transient 
Stability”, ISGT Europe 2022, Novi Sad, Serbia, October 2022.
[2] Hengqing Tian, Eleftherios O. Kontis, Georgios A. Barzegkar-Ntovom, Theofilos A. Papadopoulos, Panagiotis N. Papadopoulos, 
“Dynamic modeling of distribution networks hosting electric vehicles interconnected via fast and slow chargers, International Journal 
of Electrical Power & Energy Systems, Volume 157, 2024, 109811, ISSN 0142-0615, https://doi.org/10.1016/j.ijepes.2024.109811. 



Power system transformation on the way to achieving net zero

Redefining 
Dynamic Security 

Assessment

Dynamic 
behaviour

Proof of concept 
applications

Data-
driven 

methods

- Key driver for net zero

- System needs and services for secure and 

economic operation

- Enhanced monitoring, situational awareness 

and control

- Detailed dynamics

- Deal with complexity and uncertainty

- Appropriate models and 

simulation frameworks to 

represent increasingly complex 

dynamic behaviour

- Investigate new dynamic 

phenomena, instabilities and 

new control approaches (black 

box vendor models)

- Dynamics of active distribution 

networks

- Resilience – cascading events

- Work with industrial partners and ML experts

- Fine-tune and test methods and tools

- Applications in control room

- Measurements and machine learning

- As detailed as possible, real-time 

representation of power system dynamics

- Explainability/interpretability - Confidence 

and trust but also understanding

- Enable fast control and dynamics-aware 

optimisation

- Augment state of the art tools – what is the 

limit?



POWER SYSTEM SMALL-SIGNAL MODELLING 
TOOL



Power system small-signal modelling: A MATLAB-
based tool

• Linearised models, analysis in small region around 
an operating point.
– identify instabilities and/or problematic oscillations,
– characterise oscillations/interactions/instability based on 

participation factors,
– tune and/or design control systems (e.g. through parametric 

sweeps or more complex optimisation algorithms),
• EMT-level detail in dq0 (balanced)
• Inputs required: MATPOWER case file and 

Dynamic parameters file.
• Automatic (initialisation and library):

– Can quickly initialise and generate small-signal models
– A repository/library of components is provided (and users 

can add and/or edit as desired), including detailed grid-
following and grid-forming controllers.

• Modular:
– Easy to add or remove components to a system model.

Small-signal model creation flowchart.
SSM = small-signal model



CHARACTERISING NEW TYPES OF DYNAMIC 
PHENOMENA

Probabilistic small signal stability assessment

L. Benedetti, A. Egea-Àlvarez, R. Preece and P. N. Papadopoulos, “Enabling Characterisation of Dynamic 
Interactions with Probabilistic Small-Signal Analysis in Converter-Integrated Power Systems," submitted 
to IEEE Transactions on Power Systems, under review.



Why do we need probabilistic small-signal 
analysis?

• Increase of variable renewable energy-
sourced generation

• Increasing range, and uncertainty, of 
operating point

• How do new types of oscillations (e.g. 
SSOs) behave or change?

• Deterministic linear analysis around a 
single operating point is insufficient
– E.g., eigenvalues can vary significantly, and 

in complex patterns
– Can miss instability, mischaracterise novel 

interactions, and misinform design choices

Embedded wind and solar generation over a 
single day (8th August 2024), taken from National 
Energy System Operator Data Portal [1].

[1] National Energy System Operator, NESO Data Portal, https://data.nationalgrideso.com/, accessed Jul. 17, 2024.
Eigenvalues varying with the operating point.



Probabilistic small-signal interaction analysis 
framework

• Monte-Carlo analysis
• Large, complex systems
• Huge amounts of data

– E.g., eigenvalues, eigenvectors & participation 
factors

• We propose a framework to condense the data 
into the key distinct dynamic phenomena 
(interactions) present on the system, across the 
full operating range.
– Clustering based on participation factors.

• Furthermore, it enables characterisation and 
probabilistic analysis of the identified distinct 
dynamics.
– Stability-weighted participation index (SWPI)



Application of proposed 
framework !"#!$
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Grid-following (GFL) control
Grid-forming (GFM) control



Application of the proposed framework
Key identified mode clusters Characterisation of mode clusters

Probabilistic analysis of mode clusters

Stability-weighted participation index (SWPI)
enables participation factor-like analysis of mode 
clusters.
What interactions do the clusters represent?

Modes grouped 
based on similar 
participation factor 
characteristics,

using K-means 
clustering

Can observe 
likelihood of a mode 
cluster to:
• Be unstable
• Be below a stability 

margin threshold
• Exist for any given 

operating point



DEFINING SYSTEM STRENGTH WHILE 
CONSIDERING DYNAMICS

Small signal variability as a measure of system strength

L. Benedetti, P. N. Papadopoulos and A. Egea-Àlvarez, "A Modal Contribution Metric for Quantifying Small-
Signal Variability in Power Systems With Converter-Interfaced Generation," in IEEE Transactions on Power 
Systems (Early Access), 2024. doi: 10.1109/TPWRS.2024.3500786.



• A lot of commonly used system strength metrics are 
static in nature and neglect dynamics

• Recent approaches do consider dynamics 
(impedance-based approaches), mostly linking 
strength with stability margins

• Focus on how much a system variable (e.g. voltage 
or frequency) changes? 
– For a given disturbance in one location, how does 

voltage/frequency change throughout the network?
– Similar to traditional metrics but considering dynamics

• Not necessarily directly linked to stability but to how much output 
variables change/deviate

– Decouples strength with respect to voltage and 
frequency

– Uses modal responses to output variables and 
calculates maximum deviation

– Captures how new types of interactions influence 
variability

L. Benedetti, P. N. Papadopoulos, A. Egea, "A Modal Contribution Metric for Quantifying Small-Signal Variability in Power Systems with Converter-Interfaced Generation," available online, IEEE Transactions on Power 
Systems, https://pure.manchester.ac.uk/ws/portalfiles/portal/349631696/AModalContributionMetricforQuantifyingSmallSignalVariability.pdf .

Grid 
strength Stability

Invariability

?

Impedance*

*electrical distance from 
ideal voltage source

Voltage vs. 
frequency 

strength

Small-signal variability and system “strength”

Dataset available:
https://figshare.com/articles/dataset/Results_Data_A_Modal_Contri
bution_Metric_for_Quantifying_Small-
Signal_Variability_in_Power_Systems_with_Converter-
Interfaced_Generation/26412331 

Different perspectives of grid “strength”

https://pure.manchester.ac.uk/ws/portalfiles/portal/349631696/AModalContributionMetricforQuantifyingSmallSignalVariability.pdf
https://figshare.com/articles/dataset/Results_Data_A_Modal_Contribution_Metric_for_Quantifying_Small-Signal_Variability_in_Power_Systems_with_Converter-Interfaced_Generation/26412331
https://figshare.com/articles/dataset/Results_Data_A_Modal_Contribution_Metric_for_Quantifying_Small-Signal_Variability_in_Power_Systems_with_Converter-Interfaced_Generation/26412331
https://figshare.com/articles/dataset/Results_Data_A_Modal_Contribution_Metric_for_Quantifying_Small-Signal_Variability_in_Power_Systems_with_Converter-Interfaced_Generation/26412331
https://figshare.com/articles/dataset/Results_Data_A_Modal_Contribution_Metric_for_Quantifying_Small-Signal_Variability_in_Power_Systems_with_Converter-Interfaced_Generation/26412331


Proposed methodology and quantification metric

• Modal contribution:
– Maximum (absolute) deviation of the 

decoupled modal response: related to 
eigenvalues and eigenvectors

• Metric for small-signal variability of 
output: Maximum Absolute Modal 
Contribution (MAMC)

!!"# or 0 s

Output

Mode which 
gives MAMC

Time (s)

A
m

pl
itu

de

Links specific modes/interactions 
to the variability of the output

Time-domain response of a linear system can be 
separated into a series of decoupled modal responses



Application of the proposed methodology
Key takeaways

Voltage and frequency trends are 
independent

When generators in area 2 are 
GFMs:
- Variability is excited most by 

disturbances in area 1 (SGs 
area)

- Variability is observed in both 
area 1 and area 2

When generators in area 2 are 
GFLs:
- Variability is excited and 

observed most in area 2

Different modes can contribute 
most to variability for different 
locations of disturbance and/or 
observation

Kundur’s 2-area, 
4-generator system

Base case (SGs 
only)

GFMs for G3 & G4 GFLs for G3 & G4

−0.86 ± '0
SGs’ damper
& AVR, GFMs’ 
virtual rotors

−0.38 ± '3.04 
(0.5 Hz)
GFMs’ virtual 
rotors, SGs’ 
rotors



MACHINE LEARNING AND POWER SYSTEM 
DYNAMICS
Gaining trust, insights and improving situational awareness through explainability, physics-
informed and graph-based approaches



Can machine learning help keep the system secure?

• Existing physics-based approaches
– Based on first principles

– Power Flow, Optimal Power Flow

– Time domain simulations (RMS, EMT), eigen-analysis

• Increasing complexity and uncertainty
– Renewables, Electric Vehicles, converter-interfaced – very different dynamic 

behaviour

– New dynamic phenomena, not well understood, requiring a lot of modelling detail

– A lot more scenarios to investigate – better understanding of risks and/or more cost-
efficient operation

• What can Machine Learning do?
– Speed up security/stability assessment – up to 100s of times (with the downside of 

getting it wrong sometimes)

– Help in getting insights into complex underlying behaviours

[1] P. N. Papadopoulos, S. Chatzivasileiadis, A. Marot, "Can Machine Learning Help Keep the System Secure?," accepted on IEEE Power and Energy Magazine.

We can consider 
stability/dynamics when 

computational effort does 
not currently allow us



How can machine learning help security assessment?

• Key advantage is speed and fast screening (100s of times faster)
– Planning stage – too many scenarios (not enough time)

– Operational time (closer to real time) – not enough time (a lot of scenarios to run on given time)

– Need to balance hidden risks or over-securing (which comes at a cost)

• Situational awareness 
– Fast calculation of stability status/metrics

• Decision support
– Offer options/insights

– Optimisation (while considering detailed dynamics)

• Control (in cases where we can’t do much with current tools)
– Millions of devices

– Fast corrective actions

P. N. Papadopoulos, S. Chatzivasileiadis,  and A. Marot, "Can machine learning help keep the system secure? ," submitted to IEEE  Power and Energy Magazine.



• Trust to enable adoption – 
security of critical infrastructure 
and policy/regulatory advances 
(EU AI Act, UK govt)

– POSTnote on AI and Energy Security 
https://post.parliament.uk/research-
briefings/post-pn-0735/ 

– DESNZ funded ADViCE Expert 
Working Group (AI for 
decarbonisation 
https://www.turing.ac.uk/research/res
earch-projects/advice and relevant 
white paper.

– DESNZ/OFGEM consultations

Machine learning can help, but what do we need to get there?

https://post.parliament.uk/research-briefings/post-pn-0735/
https://post.parliament.uk/research-briefings/post-pn-0735/
https://www.turing.ac.uk/research/research-projects/advice
https://www.turing.ac.uk/research/research-projects/advice
https://www.turing.ac.uk/sites/default/files/2024-10/advice_-_policy_and_regulation_alignment_whitepaper_-_v5_-_selected_external_parties_only_2.pdf


• Trust to enable adoption – technical advances
– Explainability/interpretability – how machine learning models work and reach decisions
– Physics-informed and graph-based methods – we know and can embed physics to some extent
– Verification – performance guarantees
– “failing without warning” – follow a complementary approach to existing methods 

• Scalability - proof of concept applications
– Is it possible to train and use models efficiently for very large realistic or real networks?
– Open competitions useful in showcasing the potential and identifying gaps/shortcomings (what could go wrong?)

• Topology changes
– Combinatorial problem, can we train for all possible topologies? – graph-based methods can help

• Data quality and access/availability
• Closer interactions with academia, industry and research organisations – real world 

cases

Machine learning can help, but what do we need to get there?



Time domain simulations for dynamics and stability

Time [s]

Vo
lta

ge
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nc
y

• Evolution of system states/variables in time
– Computationally intensive, more detailed models 

(complexity), more scenarios (uncertainty)
– Black box models

• Outcome classification
– Stable/unstable, or more details through multiclass

• Stability metrics/indices
– E.g. Voltage Stability Margin, critical clearing time, 

boundary transfer limits, etc.



Stability/security assessment using machine learning – going beyond the 
notion that ML models are just powerful black-boxes

• Methods that take 
steady-state “snapshot” 
as input (SCADA/EMS)

– Binary (safe/unsafe) or 
multiclass classification

– Regression – calculation 
of a stability metric (e.g. 
critical clearing time or 
locational/regional 
RoCoF and nadir)

• Going beyond the 
notion that ML models 
are just powerful black 
box predictors

TargetPower system 
variables

YXM…X2X1

y135…3050

……………

yn20…6580

Input Output

ClassificationRegression

Trained Machine learning model, f(x)

Black box model Interpretable model 
(White box)

Stability 
Index

0.2

…

0.4

Simulated data
/measurements

ML Output, Y

Typically, better 
predictive power

Typically, limited 
predictive power 
and less 
computationally 
intensive

Training process

Secure/ 
Insecure

1

…

0

or

Operational ML model

Input Features, X
(power system variables)

...

Local

Explainability/Interpretability

……

Global

…

X1
X2

XM

… Σ Ε[f(x)]

φ1

φ2…

φΜ

f(x)

SHAP value for feature M

Additive feature attribution model
• Understanding 

and Insights
• Trust
• Guide 

operational, 
planning 
interventions

• Extract 
(simple) rules

P. N. Papadopoulos, S. Chatzivasileiadis,  and A. Marot, "Can machine learning help keep the system secure? ," accepted in IEEE  Power and Energy Magazine.
R. I. Hamilton and P. N. Papadopoulos, "Using SHAP Values and Machine Learning to Understand Trends in the Transient Stability Limit," in IEEE Transactions on Power Systems ,doi: 10.1109/TPWRS.2023.3248941.
R. I. Hamilton, P. N. Papadopoulos, W. Bukhsh and K. Bell, "Identification of Important Locational, Physical and Economic Dimensions in Power System Transient Stability Margin Estimation," in IEEE Transactions on Sustainable Energy, vol. 13, no. 2, 
pp. 1135-1146, April 2022, doi: 10.1109/TSTE.2022.3153843.



Improving situational awareness

P. N. Papadopoulos, S. Chatzivasileiadis,  and A. Marot, "Can machine learning help keep the system secure? ," accepted in IEEE  Power and Energy Magazine.
R. I. Hamilton and P. N. Papadopoulos, "Using SHAP Values and Machine Learning to Understand Trends in the Transient Stability Limit," in IEEE Transactions on Power Systems ,doi: 10.1109/TPWRS.2023.3248941.



[1] A. Kilembe, P. N.. Papadopoulos, W. Bukhsh "Neural Network-Constrained Optimal Power Flow for Locational Frequency Stability ," under 2nd round of reviews

Introducing detailed constraints from dynamics into optimisation – decision 
support

• Train a Neural Network to capture 
detailed dynamics
– Using time domain simulations so 

capturing detail
– Application to regional frequency 

stability as example

• Linearise the trained neural 
network and formulate constraints 
to implement in optimization

• Maintain detail and avoid over-
securing
– Aid decision support
– Preventive securing



Stability/security assessment using machine learning in real time

• Methods that take a time 
window as input 
(WAMS/PMUs)

– Binary/multiclass 
classification

– Corrective control

– Special protection schemes

• Control for situations we 
currently can’t act on (e.g. 
through Reinforcement 
Learning)

– Millions of devices
– Emergency control (fast 

timescales)

• Performing simulations 
faster

– Physics-Informed 
approaches

Vo
lta

ge
Fr

eq
ue

nc
y

Simulated or 
PMU data

Time

Prediction window (time series inputs)

[(NSG2-UV), (NSG3-UV), (NSG1-UV), (G2-UV), (Load_C-UF), (Load_A-UF), (Load_B-UF), (G3-US), (G1-US)]

Component that trips (e.g. wind farm 2)
Reason for tripping (e.g. under-voltage)

1st event 2nd event 3rd event
Example of a cascading event:

Trained time-series ML model • Binary classification: a cascade 
will happen or not

• Multiclass classification: reason 
for upcoming cascade (e.g. 
under-voltage or out of step)

• Fast screening 
(operational and 
planning timescales)

• Corrective control

• Dynamics and control 
(including discrete control 
actions)

• Protection devices (voltage, 
frequency, out of step)

• Tap changers
• Under-frequency load 

shedding
• Operational scenarios (load 

and renewable uncertainty)

P. N. Papadopoulos, S. Chatzivasileiadis,  and A. Marot, "Can machine learning help keep the system secure? ," accepted in IEEE  Power and Energy Magazine.



Adaptive Load Shedding through Physics-Informed Deep 
Reinforcement Learning

• Moving further from preventive securing of the 
system to real time emergency control

• Instead of pre-defined under-frequency load 
shedding settings, decide when, where and how 
much load to shed adaptively.

– Utilising information from current operating condition 
through PMUs

– Taking into consideration locational/regional frequency 
dynamics

• Physics Informed Reinforcement Learning (RL) 
to address scalability (up to 2000 buses)

– Physics-Shield (swing equation based) and Physics 
Informed Neural Networks for coherent areas detection 

– Improves training and performance

• Complementary to Under-Frequency-Load-Shedding
– UFLS can still be in operation as last resort

A. Kilembe, P. N. Papadopoulos, " Adaptive Load Shedding using Physics-Informed Deep Reinforcement Learning,” submitted.



Other use cases for ML in power systems (non-exhaustive) – 
CIGRE C2.42 Working Group

• Dynamic Security Assessment
– Safe/unsafe classification, stability index and time series calculations, etc.

• Congestion management
– Decision support on remedial actions
– Huge optimisation problem to be solved close to real time (N-k security considerations)

• Forecasting
– Load and renewables (wind and solar)
– Minutes, hours, days, months

• Alarm management and reporting
– Alarms can be overwhelming in control rooms
– Grouping, contextualising alarms

• Visual Inspection
– Equipment (transformers, power lines) and substations

• Predictive maintenance
– Predict failures, remaining lifetime of assets, asset health monitoring, etc.

• Control
– Millions of devices

CIGRE C2.42 WG TB “The impact of the growing use of machine learning/artificial intelligence in the operation and control of power networks from an operational perspective”.



Conclusions

• Increasing complexity and uncertainty in power system dynamics
• New (or careful choice of existing) models, modelling tools, modelling frameworks
• Fundamental understanding of (new) phenomena across range of operating conditions
• “System strength”

• Measurement based/data-driven and machine learning methods
• Fast assessment (100s times speed up)
• Capture complex dynamics and provide unique insights
• Important to build trust – no longer just a black box

• A three-step approach to implementation
• Improved situational awareness and fast screening 
• Decision support 
• Automation

• Industry/academia/research organization collaboration for proof-of-concept applications
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