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Power system security under increasing complexity and uncertainty

The University of Manchester
Power system dynamic studies

K Power systems are dynamic nonlinear systems \
— Arguably one of most complex man-made systems
— Up to hundreds of differential equations

* Numerical integration methods — simulations
— Timescales from <ms up to tens of seconds

— Computationally intensive

o J

Increasing Complexity

( Very different dynamic behaviour of new technologies \
and high number — need for detailed models

» Power electronic interfaced (wind, solar, batteries, HYDC
links, electric vehicles, electrolysers)

« Smaller timescales — faster dynamic phenomena
» Governed by control

Dynamics increasingly important

/ Machine learning and data-driven methods

 increased visibility, enhanced control, decision support,
automation

~

 Security, reliability and resilience improvement
* Understanding and mitigating widespread events

« Maximise integration of low/zero carbon technologies

-

Strong nonlinearities — limiters, discrete control /

\ + Cost efficient manner (“dynamics- aware” optimisation)/

Increasing Uncertainty

K Millions of devices (solar PV, wind farms, batteries, E\Q\

» “Exploding” search-space of possible operating
conditions
* Intermittent energy sources and social behaviour
+ Billions of cases if we want to do exhaustive search

\ » Affecting operational and planning timescales /




MANCH%SZEER Power System dynamics under increasing Canada, Hydro One

. complexity and uncertainty (20 Hz, PVs, current control) [2]
The University of Manchester

. Modelling and representation of dynamics

— Characterise systematically mechanisms of instability
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— Importance of investigating multiple operating conditions and understand sensitivities - data-
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driven and probabilistic approaches
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— Appropriate modelling frameworks (EMT, EMT-RMS, dynamic phasors, hybrid modelling) : J
. New types of dynamic phenomena and oscillatory interactions
— Control governing dynamic behaviour and challenges with black-box vendor models (grid forming sl A Tl - N
converters) Australia, AEMO
— Fundamental understanding: what mechanisms, under what conditions, in which locations, what (19 Hz, PVs, PLL-shunts) [2]

devices — this includes non-linear/hybrid dynamics
— How to mitigate? — damping control, discrete control modes (e.g. for weak grid), sync. comp.,
operational constraints — services

. Impact on system stability (transient, voltage and frequency)
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— Complex impact with respect to location, control parameters, etc. it R

— Not straightforward to understand critical operating conditions and faults — nonlinear
dynamics

— Low inertia and locational aspects more pronounced

[1] U. Markovic, O. Stanojev, P. Aristidou, E. Vrettos, D. Callaway and G. Hug, "Understanding Small-Signal Stability of Low-Inertia Systems," IEEE Trans. Power Syst., vol. 36, no. 5, pp. 3997-4017, Sept. 2021.

[2] L. Fan et al., "Real-World 20-Hz IBR Subsynchronous Oscillations: Signatures and Mechanism Analysis," IEEE Trans. Energy Conversion, 2022, doi: 10.1109/TEC.2022.3206795.

[3] Luke Benedetti, Alexandros Paspatis, Panagiotis N. Papadopoulos, Agusti Egea-Alvarez, Nikos Hatziargyriou, “Investigation of grid-forming and grid-following converter multi-machine interactions under different control
architectures,” Electric Power Systems Research, Volume 234, 2024, 110813, https://doi.org/10.1016/j.epsr.2024.110813.
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Dynamics and modelling needs for Active Distribution Networks

The University of Manchester Typical profiles for a) load, b) wind, c) PVs

* Active Distribution Networks

. . . . . . .
0 5 10 15 20 25 30 35 40 45 50
Time (30min time steps)

— Lack of situational awareness and equivalent model parameter sensitivity o —
— Data-driven methods for extraction of representative parameters s} — — a8
— Electric Vehicles (and Heating) changing the mix and dynamics of load .,.0._;_; TN tmecminmesy _ )
(uncertainty due to social behaviour) L —m |
* Renewable generation and Electric Vehicles S ey ]
— Typical dynamic load model structures might not be adequate CCT for a typical day, modelled with and without

. . ) . L accounting for ADN
* Interaction and services at the interface with transmission

— How can we confidently procure services from distributed resources
(generation, EVs, flexible demand) without activating constraints

net load Fen—— s DOUUUIOUUURN .
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[1] 1. S. Lamprianidou, D. Tzelepis, P. N. Papadopoulos, A. Oulis Rousis, “Impact of Active Distribution Networks on Transient o 6000 — gljf :t?:s;
Stability”, ISGT Europe 2022, Novi Sad, Serbia, October 2022. 5 —-P1=1. =5,
[2] Hengging Tian, Eleftherios O. Kontis, Georgios A. Barzegkar-Ntovom, Theofilos A. Papadopoulos, Panagiotis N. Papadopoulos, < 4000 — P1=1; 11=10;

“Dynamic modeling of distribution networks hosting electric vehicles interconnected via fast and slow chargers, International Journal 2‘0 2‘2 2‘4 2‘6 28
of Electrical Power & Energy Systems, Volume 157, 2024, 109811, ISSN 0142-0615, https://doi.org/10.1016/j.ijepes.2024.109811. Time (Second)



Power system transformation on the way to achieving net zero
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Key driver for net zero

System needs and services for secure and

economic operation

Enhanced monitoring, situational awareness

and control

Detailed dynamics

Deal with complexity and uncertainty

Measurements and machine learning

As detailed as possible, real-time

representation of power system dynamics

Explainability/interpretability - Confidence

and trust but also understanding

Enable fast control and dynamics-aware

optimisation

Augment state of the art tools — what is the

limit?
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Appropriate models and
simulation frameworks to
represent increasingly complex
dynamic behaviour

Investigate new dynamic
phenomena, instabilities and
new control approaches (black
box vendor models)

Dynamics of active distribution
networks

Resilience — cascading events
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Work with industrial partners and ML experts

- Fine-tune and test methods and tools

- Applications in control room
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POWER SYSTEM SMALL-SIGNAL MODELLING
TOOL
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based tool

Linearised models, analysis in small region around
an operating point.
— identify instabilities and/or problematic oscillations,

— characterise oscillations/interactions/instability based on
participation factors,

— tune and/or design control systems (e.g. through parametric
sweeps or more complex optimisation algorithms),

EMT-level detail in dq0 (balanced)

Inputs required: MATPOWER case file and
Dynamic parameters file.

Automatic (initialisation and library):

— Can quickly initialise and generate small-signal models

— Avrepository/library of components is provided (and users
can add and/or edit as desired), including detailed grid-
following and grid-forming controllers.

Modular:
— Easy to add or remove components to a system model.

Generate module
(SSM object)
connections

Power system small-signal modelling: A MATLAB-

vy v Y
Optimal Generate network
(O ) > g SWOIR L Connect END
power flow SSM objects
4 A A
vy v v v v
Calculation Generate
of generator generator SSM
initial states objects
Dynamic Model
Power flow y e SSM
: parameters || initialisation :
case file . - repository
file repository

Small-signal model creation flowchart.
SSM = small-signal model
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CHARACTERISING NEW TYPES OF DYNAMIC
PHENOMENA

Probabilistic small signal stability assessment

L. Benedetti, A. Egea-Alvarez, R. Preece and P. N. Papadopoulos, “Enabling Characterisation of Dynamic
Interactions with Probabilistic Small-Signal Analysis in Converter-Integrated Power Systems," submitted
to /EEE Transactions on Power Systems, under review.



sy Why do we need probabilistic small-signal
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Increase of variable renewable energy-
sourced generation

o
e

Normalised forecast
embedded generation

Increasing range, and uncertainty, of 0\ ‘ " |
operating point ®
How do new types of oscillations (e.qg. Embed e ra
SSOs) behave or change? single & \latlonal

. . Energyo.
Deterministic linear analysis around a
single operating point is insufficient f ~

— E.g., eigenvalues can vary significantly, and :

in complex patterns e

— Can miss instability, mischaracterise novel
. . L. . . Real part ofelgenvalue,
interactions, and misinform design choices R(A), (1/5)

Eigenvalues varying with the operating point.
[1] National Energy System Operator, NESO Data Portal, https://data.nationalgrideso.com/, accessed Jul. 17, 2024.



Probabilistic small-signal interaction analysis
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framework

Monte-Carlo analysis

START Probabilistic Modell

Systematic
Characterisation

¥
La rg e y com p | eX SySte ms Import model I I —
parameters. G;nerate small g
Huge amounts of data e e :

— E.g., eigenvalues, eigenvectors & participation

inputs, and OPF
case file

Calculate participation
of each category in

factors »le e L:i};f:gs each eigenvalue
Sample met? M
probabilistic Calculate SWPI to
We propose a framework to condense the data i : characterise clusters
into the key distinct dynamic phenomena T e — 1
#interactions) present on the system, across the paricipation factors ||| | ‘o Fteraction Type.
u” Operatlng range OPF Passive txode and y
— Clustering based on participation factors. converged? ol e ey e
Furthermore, it enables characterisation and YES 7 7
probabilistic analysis of the identified distinct PO K-means clustering 1y [ Analyse clusters of
dynam |CS . gclnc::me iliilial
— Stability-weighted participation index (SWPI) e b END




Application of proposed

The University of Manchester fra m eWO rk

Grid-forming (GFM) control

Rvi + le,vi

Modified IEEE 39-bus.
2 GFMs, 7 GFLs, 1 SG
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Application of the proposed framework

The University of Manchester
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Oscillation Frequency, (rad/s)
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Key identified mode clusters
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Real Part of Eigenvalue, (1), (1/s)
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Probab|llst|c analysis of mode Clusters
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Real Part of Rightmost Eigenvalue in Cluster

Modes grouped
based on similar
participation factor
characteristics,

using K-means
clustering

Can observe
likelihood of a mode
cluster to:

 Be unstable

Characterisation of mode clusters

1.579e-05 | 0.003302 | 0.01481 | 0.009972 |0.0005114 | 3.303e-05
GFL2 0.01797 | 0.06919 | 0.09328 | 0.002349 | 0.001032
GFM3 0.278 | 0.07127 | 0.05086 0.6829
GFL4 | 001018 |0.0002126 | 0.03572 | 0.1459 | 0.2198 | 0.003597 | 3.375¢-06

GFL1

0.01146 | 0.0007601

0.001521

GFL5 | 2.907e-05 | 0.0001439 | 0.01991 0.1019 0.1187 | 0.001511 | 1.387e-06
GFL6 | 0.007004 | 0.001113 | 0.02982 0.1034 0.09972 | 0.00524 |0.0003117
GFM?7 |0.0009061 0.1134 0.08147 152
GFL8| 0.1202 |4.045e-05| 0.01538 | 0.07443 0.0831 0.00179 | 9.289e-05
GFL9 | 0.02208 |4.757e-05 | 0.03236 0.1664 0.2007 | 0.003212 | 7.971e-05
SG10 | 0.07448 | 0.002212 | 0.09134 0.1393 0.04238 | 0.001587 |0.0003577

0.1009 0.9645

R 0.0001242

P-F 0.0289 | 0.02174

Q-v 0.01101 0.06008 | 0.02901 | 0.000538 |0.0002329

IVCr| 7.851e-05 | 0.01708 | 0.01657 | 0.02557 0.0498

ICCr | 6.069e-07 | 0.01671 | 0.005308 | 0.001818 | 0.007437

MF&Dr | 3.291e-09 | 4.483e-06 | 2.683e-05 | 3.903e-05 |0.0001423 | 0.0006528 | 0.0006985

Network [0.0001174 | 0.001578 | 0.00801 0.01127 | 0.01993 | 0.01377 | 0.02042

C1 C2 C3 C4 C5 Ccé c7

« Be below a stability Stability-weighted participation index (SWPI)

margin threshold
« Exist for any given
operating point

enables participation factor-like analysis of mode
clusters.
What interactions do the clusters represent?
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DEFINING SYSTEM STRENGTH WHILE
CONSIDERING DYNAMICS

Small signal variability as a measure of system strength

L. Benedetti, P. N. Papadopoulos and A. Egea-Alvarez, "A Modal Contribution Metric for Quantifying Small-
Signal Variability in Power Systems With Converter-Interfaced Generation," in /EEE Transactions on Power
Systems (Early Access), 2024. doi: 10.1109/TPWRS.2024.3500786.



Small-signal variability and system “strength”

The University of Manchester

* Alot of commonly used system strength metrics are Different perspectives of grid “strength”
static in nature and neglect dynamics

*electrical distance from

ideal voltage source
* Recent approaches do consider dynamics
(impedance-based approaches), mostly linking
strength with stability margins \><
. Voltage vs.
* Focus on how much a system variable (e.g. voltage Invariability frequency
or frequency) changes? «~ " strength

— For a given disturbance in one location, how does
voltage/frequency change throughout the network?

— Similar to traditional metrics but considering dynamics Grid Stabilit /><
* Not necessarily directly linked to stability but to how much output strength y
variables change/deviate

— Decouples strength with respect to voltage and

frequency Dataset available:

— Uses modal responses to output variables and https:/figshare.com/articles/dataset/Results_Data_A_Modal_Contri
calculates maximum deviation bution_Metric_for_Quantifying_Small-

_ Captures how new types of interactions influence Signal_Variability in_Power Systems_ with _Converter-
variability Interfaced Generation/26412331

L. Benedetti, P. N. Papadopoulos, A. Egea, "A Modal Contribution Metric for Quantifying Small-Signal Variability in Power Systems with Converter-Interfaced Generation," available online, IEEE Transactions on Power
Systems, https://pure.manchester.ac.uk/ws/portalfiles/portal/349631696/AModalContributionMetricforQuantifyingSmallSignalVariability.pdf .



https://pure.manchester.ac.uk/ws/portalfiles/portal/349631696/AModalContributionMetricforQuantifyingSmallSignalVariability.pdf
https://figshare.com/articles/dataset/Results_Data_A_Modal_Contribution_Metric_for_Quantifying_Small-Signal_Variability_in_Power_Systems_with_Converter-Interfaced_Generation/26412331
https://figshare.com/articles/dataset/Results_Data_A_Modal_Contribution_Metric_for_Quantifying_Small-Signal_Variability_in_Power_Systems_with_Converter-Interfaced_Generation/26412331
https://figshare.com/articles/dataset/Results_Data_A_Modal_Contribution_Metric_for_Quantifying_Small-Signal_Variability_in_Power_Systems_with_Converter-Interfaced_Generation/26412331
https://figshare.com/articles/dataset/Results_Data_A_Modal_Contribution_Metric_for_Quantifying_Small-Signal_Variability_in_Power_Systems_with_Converter-Interfaced_Generation/26412331

Proposed methodology and quantification metric

The University of Manchester

Links specific modes/interactions Time-domain response of a linear system can be

to th?/variability of the output separated into a series of decoupled modal responses
 Modal contribution: .l Mode which ve

v3

gives MAMC

v4
v5

— Maximum (absolute) deviation of the

decoupled modal response: related to o “\ = =you
eigenvalues and eigenvectors 2 /, \ ‘/\:.\ TS
* Metric for small-signal variability of ? ’ -
output: Maximum Absolute Modal ' A
Contribution (MAMC) Output
X(t) — Ae"tcos(wt + 0) s a5 s
A= 2P .0 !
| o n’ nmw — <0+jlog (:t—"
— tmax -
g = Z@j,ncn o

Ap =0 LW Ayt = 2 [Py 56| eftmaz cog (Whinaw + Z Cs56s.)

J,n



Application of the proposed methodology

The University of Manchester

Base case (SGs GFMs for G3 & G4 GFLs for G3 & G4 Key takeaways
only)

Voltage and frequency trends are

—0.86+,0 | . _
SGs’ damper [ 3 independent
&AVR, GFMs' 038 + j3.04 | =
virtualRIEE §(0:5:Hz) = When generators in area 2 are
GFMSs’ virtual GFMS
rotors, SGs’ e :
| N s . - Variability is excited most by
Dot Observed bus |Disturbed bus Disturbed bus —” “" Observed bus disturbances in area 1 (SGs
area)

o
-4
o
2
o
°
b

- Variability is observed in both
area 1 and area 2

0.005 {

MAMCyy
4‘[“1.‘\1(‘_\ V|
o
S

Re e When generators in area 2 are
SIS o Ghserred by Disturbed bus ez Observed bus G FLS
Argees - - Variability is excited and

observed most in area 2

110 km|110 km

Lol oLl

Different modes can contribute
most to variability for different
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MACHINE LEARNING AND POWER SYSTEM
DYNAMICS

Gaining trust, insights and improving situational awareness through explainability, physics-
informed and graph-based approaches



Can machine learning help keep the system secure?

The University of Manchester

« Existing physics-based approaches
— Based on first principles
— Power Flow, Optimal Power Flow

— Time domain simulations (RMS, EMT), eigen-analysis

* Increasing complexity and uncertainty

— Renewables, Electric Vehicles, converter-interfaced — very different dynamic
behaviour

— New dynamic phenomena, not well understood, requiring a lot of modelling detail

— Alot more scenarios to investigate — better understanding of risks and/or more cost-
efficient operation We can consider

« What can Machine Learning do? mreeesssssssssssssssss———m)  stability/dynamics when

— Speed up security/stability assessment — up to 100s of times (with the downside of comi)utatlonﬁl eflflort does
getting it wrong sometimes) not currently allow us

— Help in getting insights into complex underlying behaviours

[1] P. N. Papadopoulos, S. Chatzivasileiadis, A. Marot, "Can Machine Learning Help Keep the System Secure?," accepted on IEEE Power and Energy Magazine.



MRS EEIEN  How can machine learning help security assessment?

The University of Manchester

Key advantage is speed and fast screening (100s of times faster)
— Planning stage — too many scenarios (not enough time)
— Operational time (closer to real time) — not enough time (a lot of scenarios to run on given time)

— Need to balance hidden risks or over-securing (which comes at a cost)

Situational awareness

— Fast calculation of stability status/metrics

Decision support
— Offer options/insights

— Optimisation (while considering detailed dynamics)

Control (in cases where we can’t do much with current tools)
— Millions of devices

— Fast corrective actions

P. N. Papadopoulos, S. Chatzivasileiadis, and A. Marot, "Can machine learning help keep the system secure? ," submitted to IEEE Power and Energy Magazine.
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Trust to enable adoption —
security of critical infrastructure

and policy/regulatory advances

(EU Al Act, UK govt)

— POSTnote on Al and Energy Security
https://post.parliament.uk/research-
briefings/post-pn-0735/

— DESNZ funded ADVIiCE Expert
Working Group (Al for

decarbonisation
https://www.turing.ac.uk/research/res

earch-projects/advice and relevant
white paper.
— DESNZ/OFGEM consultations

ADVICE | lieaseciie.

ADVICE Expert Working Group Whitepaper

Al for Decarbonisation: Policy and Regulation Alignment

Group Chair: Lucy Yu, CEQ, Centre for Net Zero (Octopus)
Theme Lead: Pippa Robertson, Deputy Director of Artificial Intelligence Policy (Ofgem)

The ADVICE project’s mission is dedicated to advancing innovation in Al to address
decarbonisation challenges across four pivotal sectors: Energy, Built Environment,
Manufacturing and Agriculture. ADVICE is a £500k project in the DESNZ Net Zero
Innovation Portfolio, part of Stream 1 of the Artificial Intelligence for Decarbonisation
lnnovation Programme.

As part of these efforts, an Expert Working Group (EWG) has been established to
contextualise the current opportunities and hurdles in adopting Al solutions for
decarbonisation. The EWG engages a diverse array of experts, including sector
representatives, startups, regulators, and academics. This white paper series, a main
output of the EWG, compiles key observations and recommendations gathered during the
sessions built around three themes:

e Al for Decarbonisation Policy and Regulation Alignment
e Unlocking and Enabling Investment and Innovation
e Data Accessibility and Capability

The EWG and the white paper series aim to inform policy and shape the design of future
interventions in Al for decarbonisation for DESNZ.

The white paper series synthesises perspectives and themes identified during the EWG
meetings, as well as findings from additional research across the project’s activities,
including the webinar series, the reports, and the programme partners’ own expertise.

UK Parliament POSTnote 735
POST —
Josh Oxby

10 December 2024

Energy security and AI

Overview

Artificial umalﬁgen:e(AI) and machine leaming have a range of current and
emerging within the energy sector, with the potential to optimise
and accelerate energy planning, generation, and use.

Al could use data from devices such as smart meters and substation
nmmxgtohdpaddeesmeuregmulre\ewauecanemondelaﬁmd
network congestion. It could also speed-up decarbonisation of the
msmwmmmmwmmm
Zemrzgetsandredmecostsfercm

There are technical and infrastructural barriers to wider adoption of Al in the
energy system, including data access, regulation, shllsgq:s and availability
and reliability of the physical infrastructure that supports AL

Stakeholders have raised concerns around privacy, cyber security, energy
use, faimess, ethical use, and operational challenges.

Stakeholders suggest that more support is needed to develop Al in the
sactor, and that regulation needs to change to ensure optimal benefits can be
gained from wider integration of Al in the energy system, while avoiding


https://post.parliament.uk/research-briefings/post-pn-0735/
https://post.parliament.uk/research-briefings/post-pn-0735/
https://www.turing.ac.uk/research/research-projects/advice
https://www.turing.ac.uk/research/research-projects/advice
https://www.turing.ac.uk/sites/default/files/2024-10/advice_-_policy_and_regulation_alignment_whitepaper_-_v5_-_selected_external_parties_only_2.pdf

A m  Machine learning can help, but what do we need to get there?

Trust to enable adoption — technical advances

— Explainability/interpretability — how machine learning models work and reach decisions

— Physics-informed and graph-based methods — we know and can embed physics to some extent

— Verification — performance guarantees

— “failing without warning” — follow a complementary approach to existing methods
Scalability - proof of concept applications

— Is it possible to train and use models efficiently for very large realistic or real networks?

— Open competitions useful in showcasing the potential and identifying gaps/shortcomings (what could go wrong?)
Topology changes

— Combinatorial problem, can we train for all possible topologies? — graph-based methods can help

Data quality and access/availability

Closer interactions with academia, industry and research organisations — real world
cases



e Time domain simulations for dynamics and stability
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E G2 tripped
i Itn e ‘

0»78 L L 1 " 1 "
0.0000 31.215 62.430 93.646 124.86 [s] 156
] i | bus_Load_A
[Hz] ¢ G2 tripped | bus_Load_B
> 61.00 fpozmm-mmmmmmmmmm b0 A--L-------—-—--uu----a: ------------------- bus_Load_C
O | Bus 1
C ! Bus 2
% 7 . O S Bus 3
| System collapse i
O | = i
qs_') L1 e e e e -‘: ------------------------------------------
LL :
55.00 —L“: ------------------------------------------
5 ; ‘ . i . l ‘
153.45 154.58 155.71 156.85 [s]

Evolution of system states/variables in time

Computationally intensive, more detailed models
(complexity), more scenarios (uncertainty)

Black box models

Outcome classification

Stable/unstable, or more details through multiclass

Stability metrics/indices

E.g. Voltage Stability Margin, critical clearing time,
boundary transfer limits, etc.
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« Methods that take

steady-state “snapshot”
as input (SCADA/EMS)

Binary (safe/unsafe) or
multiclass classification

Regression — calculation
of a stability metric (e.g.
critical clearing time or
locational/regional
RoCoF and nadir)

« Going beyond the
notion that ML models
are just powerful black
box predictors

Training process

( Input Output1
[ : V[ x_\
'* Power system Target
variables
. X, X X Y
Simulated data ! 2 M
/measurements | 5o 30 35 Vi
80 65 20 Va

Input Features, X
(power system variables)

7

Operational ML model

|:§| Trained Machine learning model, f(x) | A
Interpretable model

Black box model

(White box)

Typically, better
predictive power

Explainability/Interpretability

v

-y ~

X219
-

Tl

Typically, limited
predictive power
and less
computationally
intensive

Additive feature attribution model

— fix)

SHAI;hJe for feature M

V

sdihrzdzty

i

P. N. Papadopoulos, S. Chatzivasileiadis, and A. Marot, "Can machine learning help keep the system secure? ," accepted in IEEE Power and Energy Magazine.
R. I. Hamilton and P. N. Papadopoulos, "Using SHAP Values and Machine Learning to Understand Trends in the Transient Stability Limit," in IEEE Transactions on Power Systems ,doi: 10.1109/TPWRS.2023.3248941.

R. I. Hamilton, P. N. Papadopoulos, W. Bukhsh and K. Bell, "Identification of Important Locational, Physical and Economic Dimensions in Power System Transient Stability Margin Estimation," in IEEE Transactions on Sustainable Energy, vol. 13, no. 2

pp. 1135-1146, April 2022, doi: 10.1109/TSTE.2022.3153843.

Stability/security assessment using machine learning — going beyond the
notion that ML models are just powerful black-boxes

ML Output, Y

4 N
Stability Secure/
Index Insecure
0.2 1
or
0.4 0

l

O\

LRegression CIassificatiorL

Understanding\

and Insights

e Trust

* Guide
operational,
planning
interventions

* Extract

K (simple)ruIeS/




MANCHESTER

The University of Manchester

SHAP

11— re - it
@o =l = e - N

ANN  SHAP N
|| R ® ANN  SHAP
@O "'ll ~-ifem— P [HE
- -— _s i
Trses - \ 'l' 3— ’\f//
L T e )
Y == <.

| i Overall stability margin estimation & insights:

CCTmin = min{CCT,,CCTs, ...,

S o
it C()V(;l‘.y)= Yic (@i — &) (yi — 7))

CCT,} .-

N -1

Improving situational awareness

ame »
’
- b
-——
132 Ange (deg) -
Goz Ratng (v P
—
-
-
-+
tw et (VA 8) —

7 Resctive Fower (M) -+
Active Power Line 56 (MW) R
Reat RES1 Caaciy (MVA) —

nex 1011 04w) —
7 Angie (dog -+
Active Power Line 4.14 (W) -
Teead AES3 Capacty (HVA) —

SHAP vaie (Ipact o madel output

P. N. Papadopoulos, S. Chatzivasileiadis, and A. Marot, "Can machine learning help keep the system secure?," accepted in IEEE Power and Energy Magazine.
R. I. Hamilton and P. N. Papadopoulos, "Using SHAP Values and Machine Learning to Understand Trends in the Transient Stability Limit," in [EEE Transactions on Power Systems ,doi: 10.1109/TPWRS.2023.3248941.

B03

f+91114$TlT41

SHAP vae (Ivgact on model output)

B10

'

}

!

I’Y**T*'T"'I

2100 2075 0950 -0.023 0.000

SHAP value (impact on madel output)

T*nﬂl

Teature valoe

Teature vaie



VNN e tiaaod  Introducing detailed constraints from dynamics into optimisation — decision
1824 support
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* Moving further from preventive securing of the
system to real time emergency control

* Instead of pre-defined under-frequency load
shedding settings, decide when, where and how
much load to shed adaptively.

— Utilising information from current operating condition
through PMUs

— Taking into consideration locational/regional frequency
dyn amics Databasc

* Physics Informed Reinforcement Learning (RL)
to address scalability (up to 2000 buses)

— Physics-Shield iswing equation based) and Physics
Informed Neural Networks for coherent areas detection

— Improves training and performance

« Complementary to Under-Frequency-Load-Shedding
— UFLS can still be in operation as last resort

A. Kilembe, P. N. Papadopoulos, " Adaptive Load Shedding using Physics-Informed Deep Reinforcement Learning,” submitted.
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e ‘?&‘0

o,
S
SRR AN O 55
g Sl B

Fogo &
N
S OSIN
ERRLTL XK ‘.,\;.
: X

2ot

(Physics :Reward)

A
RL:Agent

(State, Agent Reward) ®< (State, Environment Reward)



W \Nesisnwa:8 Other use cases for ML in power systems (non-exhaustive) —
o CIGRE C2.42 Working Group
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Dynamic Security Assessment
— Safe/unsafe classification, stability index and time series calculations, etc.

Congestion management
— Decision support on remedial actions
— Huge optimisation problem to be solved close to real time (N-k security considerations)

« Forecasting
— Load and renewables (wind and solar)
— Minutes, hours, days, months

« Alarm management and reporting
— Alarms can be overwhelming in control rooms
— Grouping, contextualising alarms
* Visual Inspection
— Equipment (transformers, power lines) and substations

* Predictive maintenance
— Predict failures, remaining lifetime of assets, asset health monitoring, etc.

« Control
— Millions of devices

CIGRE C2.42 WG TB “The impact of the growing use of machine learning/artificial intelligence in the operation and control of power networks from an operational perspective”.
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* Increasing complexity and uncertainty in power system dynamics
* New (or careful choice of existing) models, modelling tools, modelling frameworks

* Fundamental understanding of (new) phenomena across range of operating conditions
+ “System strength”

» Measurement based/data-driven and machine learning methods
» Fast assessment (100s times speed up)
« Capture complex dynamics and provide unique insights
« Important to build trust — no longer just a black box
« Athree-step approach to implementation
» Improved situational awareness and fast screening
» Decision support
« Automation
* Industry/academia/research organization collaboration for proof-of-concept applications
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