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SUMMARY 
Finding a suitable replacement for sulphur hexafluoride (SF6) in the gas insulated equipment is 
a major challenge facing the energy industry due to its incredibly high global warming potential 
(GWP), which is 25,200 times greater than that of CO2 with an atmospheric lifetime of 3,200 
years. There are around 114 million unique compounds in the PubChem database, and it is 
physically impossible to test all existing chemical compounds through laboratory scaled 
investigation. An iterative approach of mixture optimisation with a genetic algorithm can help 
narrow down the search space to a more feasible number of candidates. Besides a vast number 
of compounds and mixture combinations, there are also a range of parameters such as dielectric 
strength, boiling point, toxicity and GWP that must be collectively considered, which points to 
the application of advanced multi-objective optimisation techniques for balancing all the 
required properties. The benefit of the computational approach is clearly evident as the 
generated mixtures contain researched solutions reported in the literature such as C3F7CN and 
CF3I. Furthermore, the developed approach is effective at identifying an optimal set of mixtures 
from a large space of possible mixture combinations and ratios. 
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1 Introduction 
SF6 is a potent greenhouse gas that is extensively used in electricity transmission and distribution 
equipment. It has been reported by National Grid to be their largest controllable element of direct 
emission at ~280,500 tonnes CO2 equivalent in 2018/19 [1]. Replacing it with an environmentally 
friendlier insulating gas is an important step to decarbonise the electricity grid. Finding an alternative 
to SF6 is a challenging task due to its outstanding insulating properties and the ability to remain gaseous 
at elevated pressure which allows the gas-insulated equipment to be compact and reliable. Besides that, 
any research cycle of new gas candidates will be costly and time consuming as it relies on extensive 
volume of experiments to evaluate the key properties of mixtures. In combination with a very large 
search space of chemical compounds, there is a high chance of missing the optimal solution. Therefore, 
there is a need for a computational approach to narrow down the number of potential candidates using 
pre-defined evaluation criteria. 
Currently, there are several proposed alternatives that possess higher dielectric strength and reduced 
GWP than SF6, the most prominent one being C3F7CN for high voltage (HV) applications. This gas 
possesses a dielectric strength double of SF6 and a GWP of 2,240. Due to its boiling point limitation, it 
is typically used as part of a binary or tertiary mixture for new-build [2] and retro fill applications [3]. 
However, there is an increasing discussion on banning the use of Perfluoroalkyl and Polyfluoroalkyl 
Substances (PFAS) with 3M, the main manufacturer of C3F7CN, recently announcing that they will stop 
their production of PFAS materials by the end of 2025 [4]. It is clear there is no consensus on a single 
replacement candidate for SF6 in the market and the upcoming F-gas regulation 2023 could drastically 
change the outlook on SF6 alternatives. This reinforces the importance of developing a faster assessment 
approach to evaluate different candidates due to uncertainties in future regulation changes to production 
and use of PFAS. In this paper, a methodology combining clustering and genetic algorithms applied to 
optimisation of gas mixtures from compounds reported in the literature is presented.  

2 Estimation of Gas Mixture Properties 
As this work is concerned with selection of gas mixtures, calculation of key properties that define the 
suitability of any gas mixture for HV insulation is essential for evaluation of alternatives. Common 
calculation methods require a lot of input parameters or experimental data which are difficult to gather 
for a large set of compounds. Hence, simplified estimation algorithms were developed for properties 
where existing approaches are unfeasible. It is important to note that dew point and dielectric strength 
are dependent on temperature and pressure. Hence, this work calculates all values for standard ambient 
temperature of 25 oC at 1 bar absolute. 

2.1 Global Warming Potential (GWP) 
A method for GWP calculation of a mixture was found in [6]. It uses a weighted sum, shown in Equation 
(1). The overall mixture values are proportional to the GWP of the gases and the ratio of their molar 
mass in the mixture.  
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where mole% - mole percentage, m – molar mass, m% - mass ratio, n – number of compounds. 

2.2 Toxicity 
Health effects of a gas are usually evaluated by measuring its acute toxicity estimate (ATE). Gas 
inhalation toxicity is typically expressed as LC50 – concentration of substance that kills 50% of test 
subjects in a given time period. The standard exposure time is 4 hours and, in this case, LC50 is equal to 
ATE in accordance with Globally Harmonized System of Classification and Labelling of Chemicals 
(GHS) [7]. The toxicity of a mixture is calculated using Equation (2). 
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where 𝐶" is the concentration of i-th compound, n the number of compounds, and 𝐴𝑇𝐸" is the acute 
toxicity estimate of the i-th compound [7]. 

Note that direct use of ATE in the algorithm is not suitable as there might be large differences between 
values even if gases are non-toxic, which will add unwanted bias to gases like oxygen (O2). Hence, 
there needs to be a flooring function that keeps all toxicity values in a sensible range. Table 1 shows 
conversion of hazard categories and range values to a single ATE point suggested by GHS which is 
adopted in the algorithm before applying Equation (2). Note that gases with LC50 greater than 20,000 
ppm/4h are assigned a value of 5,500. 

Table 1. Conversion of hazard categories and ATE ranges to a point estimate [7] 

Exposure route Classification category or ATE range Converted acute toxicity point 
estimate 

Inhalation (ppmV) 

0 < Category 1 ≤ 100 
100 < Category 2 ≤ 500 
500 < Category 3 ≤ 2500 

2500 < Category 4 ≤ 20000 

10 
100 
700 
4500 

 

2.3 Dew Point 
Boling point is a widely available property for many compounds but a more suitable quantity to describe 
the liquefaction temperature at a given pressure is the dew point. Dew point is the same as boiling point 
for single compounds and only diverges in mixtures [8], which means that both can be estimated if one 
of the properties is known. 
The common way of calculating dew points of gas mixtures is to solve the Peng-Robinson Equation of 
State. However, this approach requires an input of a critical temperature, critical pressure, and an 
acentric factor for each compound which is unfeasible for the purpose of screening large volume of gas 
candidates. Therefore, a simpler estimation algorithm was developed that only requires boiling points 
of mixture components to be known and Excel tools with modified MATLAB programs by Carl Lira 
and Richard Elliot [9] were used to validate the method.  
Initially, a simple weighted sum Equation (3) was tested for several binary mixtures, but the error of 
this linear estimation approach rapidly grows as the difference between boiling points of compounds 
increases. This led to implementation of another estimation method – a quadratic Bezier curve. Equation 
(4) shows how the Bezier curve is calculated from three input points. 
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where 𝑇)!"# is the dew point of the mixture, 𝑇*"  the boiling point of a compound, mole% - mole 
percentage. 

𝑄(𝑡) = 	 (1 − 𝑡)+𝑃, + 2(1 − 𝑡)𝑡𝑃' + 𝑡+𝑃+, 0 ≤ 𝑡 ≤ 1 (4) 

where 𝑃', 𝑃&, 𝑃( are points on a two-dimensional plane. 
 
As shown in Figure 1, the Bezier approach provides better estimation for mixtures with a wider 
difference in boiling point but overestimates smaller changes. Similar trend was observed for tertiary 
mixtures as it can be assumed as a binary mixture neglecting the compound with the boiling point that 
lies in the middle of the three compounds. Therefore, a composite method is used to determine the dew 
point of a mixture i.e., linear estimation when difference is less than 1.2 and Bezier curve above 1.2. 
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(a) (b) 

Figure 1. Comparison between dew point estimation methods (Bezier, linear) with calculated by Peng-Robinson Equation of 
State values [9], (a) – C3F7CN and C6F12O mixture with boiling point difference of 1.2 °C (b) – C6F12O and N2 mixture with 

boiling point difference of 4.16 °C. 

2.4 Dielectric Strength 
Accurate estimation of the dielectric strength is the most challenging out of all the investigated 
parameters. A common method is the use of the Boltzmann equation which mathematically describes 
collision of particles of a given chemical compound. However, this requires accurate electron swarm 
parameters that can only be obtained experimentally.  
Existing data of several mixtures shows that the change of (E/N)crit with respect to gas concentrations 
is highly dependent on the compounds. For example, mixture of CF3I and N2 has a linear trend but for 
SF6 with N2 the line is curved for 0 to 40% of SF6 within the binary mixture [10]. Further complication 
is introduced for tertiary mixtures. For an initial screening process of different gas candidates, it was 
decided in this study to adopt a weighted sum for (E/N)crit estimation similar to Equation (3). Such 
simplified approach produces an error up to 30% for certain mixtures but the general trend is correct. 
Hence, it allows the genetic algorithm to select optimal mixtures correctly as shown in the results 
analysis despite the error margin. 

3 Approach Development 
The selection of gas mixtures as new SF6 alternatives is based on several parameters that must be 
considered simultaneously. This makes the comparison of the mixtures challenging as candidates can 
be better or worse in different aspects which means there is no single one-for-one solution. To narrow 
down the search space, multi-objective optimisation techniques are used to identify a set of solutions as 
close to the desired properties range as possible. In this work the aim is to minimise dew point, GWP 
and to maximise dielectric strength and acute toxicity estimate. 
There are several machine learning techniques that can perform multi-objective optimisation as 
summarised in [11], but the most suitable approach for gas mixture generation is an evolutionary 
algorithm. More specifically, a genetic algorithm is explored in this work for gas mixture optimisation 
as it allows a close representation of mixtures as virtual objects. It is a simple, yet powerful algorithm 
based on the natural evolution processes. In addition to that, clustering of data points is added at the 
initialisation stage to define the structure of mixtures generated in the main algorithm.  

3.1 Genetic Algorithm 
The mixture evolution program is based on a genetic algorithm and its structure is shown in Figure 2. 
Genetic algorithms start with a random population of candidate solutions called ‘individuals’ that are 
used to iteratively produce new generations by crossover and mutation of selected ‘parent’ candidates. 
The input to the program is a dataset of 33 compounds which are filtered to remove highly flammable 
gases, resulting in 26 data points with known LC50, GWP, (E/N)crit and boiling point. To enhance 
mixture generation, clustering of the dataset (further explained in Section 3.2) is performed to define a 
structure for all individuals. A stopping condition can be based on a certain feature of the population 
but, in this case, there is no definitive measure of candidate performance. Therefore, the algorithm uses 
a fixed number of iterations that can be adjusted after manual analysis of the outputs.  
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Figure 2. Mixture evolution program flowchart 

Mixture generation requires both the compound combination to be identified and then the ratios to be 
assigned to each compound, making this a two-layer problem. This issue is tackled by exploring all 
possible ratios with a fixed step (typically 1 to 5%) for each mixture and selecting the best solutions 
which leaves only the compound combinations to be optimised.  
All mixtures with their respective ratios have their properties evaluated and assigned as a multi-
objective fitness. Then the optimal set of solutions are selected so that only the best candidates are used 
for further iterations. This is carried out by identifying a Pareto front which only contains non-
dominated solutions with its principle illustrated in Figure 3. 

 
Figure 3. Pareto front and individual / particle domination principle [12] 

A set of optimal mixtures is used to calculate the popularity of compounds which is simply their number 
of occurrences in the Pareto front. A sum of popularities of each compound in the mixture is treated as 
an overall fitness of the individual. This approach reduces the dimensionality of the problem to a single 
parameter and enables a simple parent selection with a roulette wheel where the probability of an 
individual being chosen is based on the total popularity of the compound in the mixture.  
After two parent individuals have been chosen, there is a fixed probability that one of their compounds 
are randomly swapped to create ‘offspring’. Mutation of the newly generated individuals is 
implemented as a small probability of a child-individual to have one of its compounds replaced by a 
random one from the dataset. The new generation has the same number of individuals so to keep the 
population size constant. Note that individuals can be both binary and tertiary mixtures. 

3.2 Hierarchical Clustering 
Random selection of mixture compounds is not a suitable way to generate and evolve candidate 
solutions because this can result in unusable combinations such as having three fluorinated gases. 
Therefore, having compounds clustered allows a more structured and informed approach to mixture 
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generation which narrows down the number of investigated candidates as well as gives control over the 
compound combinations searched by the algorithm.   
Hierarchical clustering method was selected as any desired number of clusters can be easily identified 
by looking at the dendrogram which is not the case for other clustering methods. Besides that, the size 
of the input dataset is small, hence the pairwise distance calculations are quick. The features used to 
group the data points are toxicity, GWP, (E/N)crit and boiling point. Figure 4 shows the resulting five 
clusters of 26 compounds indicated by different shapes.  

     
Figure 4. Clustered compound dataset of 26 compounds using scaled between 0 and 1 values of toxicity, GWP, (E/N)crit and 

boiling point. Filled circles - cluster mostly contains buffer gases such as N2, CO2, O2, filled squares - cluster consists of 
fluorinated gases with high dielectric strength like C3F7CN and C5F10O. Filled/unfilled diamonds and unfilled circles - 

average parameters but a noticeable difference in the GWP range (includes SF6, CF3I, etc). Same plot shown from different 
angles. Toxicity is not shown on the axes. 

Identified clusters are then used to define the structure of generated mixtures by assigning each group 
to the slots in the container object. This process is manually reviewed before running the genetic 
algorithm to ensure a reasonable position for clusters. Figure 5 visualises the structure of individuals. 
For the current dataset the first slot is filled with a compound from clusters with high dielectric strength, 
the second slot is open for any compounds and the third slot only allows compounds with low GWP 
and low boiling point.  

 
Figure 5. Individual’s array with assigned clusters from Figure 4 

4 Results and Analysis 
The program ran for 100 iterations with 26 compounds to evaluate its performance. Population size was 
set to 200 individuals which is less than 7% of the total amount of compound combinations and fine-
tuned probabilities of crossover and mutation were set as 0.7 and 0.3 respectively. Mixture structure 
used is shown in Figure 5 and ratio step used in mixtures is 5%. 
It can be seen in Figure 6, that the generations have converged to a small set of gases with the highest 
occurrence in the Pareto front. CF3I is the most popular compound with twice as many occurrences as 
the next leading compound in N2. This is somewhat expected because it is one of the researched SF6 
alternatives [13] with a GWP of only 0.4. Another compound with high dielectric strength selected by 
the algorithm is C3F7CN but it has less occurrences than CF3I due to a higher GWP value of 2,240. 

O2 and N2 are also in the top four popular compounds which are the typical buffer gases used in existing 
applications. In practice, O2 can only be used in lower concentrations as it is an oxidiser and can 
intensify combustion of flammable compounds. The use of CO2 and N2 is more common as the main 
buffer gas. The rest of the compounds are filtered out which is a great result considering the defined 

Slot 1 Slot 2 Slot 3 

Clusters: 
Squares, unfilled circles, 

filled diamonds  

Clusters: 
All 

Clusters: 
Filled circles 
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evaluation parameters. Most of the dataset consists of unusable in practice gases which are either toxic, 
harmful to the environment or simply are outperformed by other gases in the dataset and the algorithm 
manages to select the better options to generate mixtures.  

 
Figure 6. Compound occurrence in Pareto front after 100 iterations 

The main output of the program is a set of optimal mixture combinations with concentrations, shown 
in Figure 7. Candidates in the resulting Pareto front can be split into three groups according to the 
property ranges. Green group is formed mostly by mixtures of CF3I with various atmospheric gases as 
well as C3H2F4. Its key property is low GWP but this comes at a cost of a limited dielectric strength of 
mixtures. Blue candidates are all combinations of CF3I with C3F7CN and buffer gases. These solutions 
have the highest dielectric strength compared to other groups, but their liquefaction temperature is a 
concern.  

Other solutions in the Pareto front are made up of compounds like CF3I, C5F10O, C3F7CN combined 
with low boiling point gases which results in a middle parameter range. Many of the resulting mixtures, 
such as ones highlighted in Figure 7, are similar to the previously investigated SF6 replacement 
candidates [13]. The rest of the output candidates contain promising compounds but must be 
experimentally validated before any judgment can be made regarding their suitability.  

 
Figure 7. Pareto optimal solutions after 100 iterations: blue circle – (E/N)crit > 400 Td and boiling point > 255 K; green 

diamond – GWP < 100; and yellow square – other gases. 

The developed program has successfully utilised a genetic algorithm to separate the gases with better 
features and use them in the mixtures. The ability of the program to identify the useful compounds 
based on many parameters is exceptional with 100% of the poor compounds being the least occurring 
in the output. However, a small size of the dataset limits the ability to test the algorithm. The 
convergence of the program on the desired compounds is fast in this setup but the same cannot be 
assumed for a larger variation of input gases. Therefore, there is no certainty in stability of the algorithm 
and larger scale runs must be done to evaluate the consistency of results. 
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5 Conclusions 
A computational approach based on a genetic algorithm and hierarchical clustering has been developed 
to optimise gas mixtures from a set of compounds. The undertaken work has covered the issues related 
to the use of SF6 as an insulation medium in power equipment and highlighted the benefit of using 
machine learning to select environmentally friendlier alternatives.  
The main conclusions of this work are as follows: 

1. Developed estimation methods for dew points, toxicity, GWP and (E/N)crit of mixtures 
minimise the amount of required input parameters and reproduce real trends close enough for 
the genetic algorithm to correctly evaluate the candidates. 

2. Hierarchical clustering applied to a dataset allowed to manually define a structure of individuals 
in the genetic algorithm which focused generated mixtures on desired combinations. 

3. Genetic algorithm for mixture optimisation produced a set of Pareto optimal solutions from a 
small starting population that is less than 7% of the total search space. Some of the resulting 
candidates are reinforced by previous research and all unusable in practice compounds have 
been filtered out with 4 out of 26 gases in CF3I, C3F7CN, N2 and O2 being predominant in the 
resulting mixtures.  
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