Future Power	
Networks	
æ	
Smart Grids	
Centre for	
Doctoral Traini	ng

Quantifying the value of interconnection between islanded Minigrids for universal electrification

SC C6 - Distribution Systems and Dispersed Generation PS 3 - Intelligent electrification for all Off-grid electrical systems for remote and rural deployment

Jonathan Bowes

Engineering and Physical Sciences Research Council Imperial College London

Electricity access is not Binary

How do people move up the energy access tiers?

	Tier 0	Tier 1	Tier 2	Tier 3	Tier 4	Tier 5
Capacity	No electricity	1-50W	50-500W	500-2000W	>2000W	
Duration	<4hrs	4-8hrs		8-16hrs	16-22hrs	>22hrs
Reliability		Unscheduled outages			No unscheduled outages	
Quality	Low quality			Good quality		
Affordability	Not affordable			Affordable		
Legality	Not legal		Legal			
Health & Safety		Not con	venient		Convenient	

Future Power
Networks
£
Smart Grids
Centre for
Doctoral Training

Domestic Load Profiles

Demand Diversity

Grid 1

Grid 1 reliability (Hours failure per year)	Grid 2 reliability (Hours failure per year)			
No Interconnection				
211.48	6.37			
Interconnected at 380VC over 100m				
23.88	5.89			

Grid 2

- Demand (Total, profiles over year)
- Generation (Total, profiles over year)
- Battery (state of charge, utilisation)
- Despatchable generation (utilisation, energy served)
- Expected Energy not Served
- System reliability
- Interconnection (Utilisation, energy transferred)

- Work with BBOXX and other companies to develop and apply methodology
- Expand methodology to meshed networks
- Apply optimisation to enhance use as planning tool

Questions?