Cigré Young Members Showcase, 20th February 2018 sc c1 – system development and economics ps3 / coordinated planning between grid operators across all voltage levels

Characterisation of Electric Vehicle Rapid Charging Demand based on Smartphone Locational Data from Google Maps

James Dixon Department of Electronic and Electrical Engineering University of Strathclyde, Glasgow

james.dixon@strath.ac.uk

Context

<u>1. Lack of off-street</u> parking

<u>3. Changing Car</u> <u>Ownership</u>

Human Behaviour

- Widespread EV uptake hasn't happened yet in the UK
- It's difficult to predict how people will behave
- Most of the work to date is based on surveys, which represents peoples' *perception* of their behaviour

Google Maps Popular Times

- Collected from Smartphone users with the Google Maps application (and location history enabled)
- Hourly popularity (%) data based on 'peak popularity' for a given day of the week

- +
- Captures users' actual movement patterns
- Constantly changing
- 'Sample size' is potentially very large

- No absolute numbers
- No seasonal variation
- Selection bias?

Data

Monte Carlo

Popularity (%)

Monte Carlo

Popularity Profile, Friday - 1 MC trial

How does this translate to number of vehicles?

Arrival Profile

Number of vehicles arriving in a given hour

EV Charging Forecourt

² RAC Foundation, "Plug-in grant eligible vehicles licensed," 2017. [Online]. Available: https://goo.gl/ZnR1fZ.

Results (one MC trial)

Friday, 8 x 100 kW chargers

Histogram (10,000 MC trials)

Friday, 8 x 100 kW chargers

Comparison with Existing Load

Comparison with Existing Load

University of Strathclyde Engineering

Conclusion

- There is an information gap in our knowledge of how people will charge their EVs – this method can help to bridge it
- It can also be applied to 'destination charging' (gyms, cinemas, supermarkets etc.) using a very similar method
- This method could be developed to evaluate the need for network reinforcement following integration of EV rapid charging infrastructure
- ...and assess the feasibility of 'smart' alternatives

Q&A

Appendix Slides

GB Petrol Stations

Average Data

Queue Theory Service Time

Average throughput, GB petrol station = 6 million litres/year Average fuel delivery = 40 litres Number of cars required to meet that throughput = 150,000/year = 411 per day

Gyms

University of Strathclyde Engineering

(III) SIIII

Shopping Malls

Cinemas

