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O Reduction in effective system inertia and possibility of

larger infeed losses

* Unacceptable RoCoF (>1 Hz/s) and frequency nadir (<49.2

Hz)

O Mitigation - Rapid frequency response (RFR) from
» Wind farms, HVDC infeed, storage
AND/OR

> Fast load/demand response

= On-off (duty cycle) control of thermostatically
controlled loads (TCLs)

= Exploit flexibility in other load types using ‘Electric
Spring’

Voltage control of suitable static loads (e.g.
heating, some lighting)

Frequency control of suitable drive-controlled
motors (e.g. blowers)
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Traditional primary frequency response required in absence
of alternatives
Source: National Grid. System Operability Framework 2015
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= Series compensator with cluster of
voltage dependent loads

= [nverter rating is part of the nominal
load rating

= |njected voltage (V5£6:5) controlled
to regulate mains voltage (V) while
allowing load voltage (V) to vary

= Can provide voltage and/or frequency
regulation

= Can be of two types
» Reactive compensation only (SLQ)

» Back-to-back inverter arrangement
(SLBC)

Supply/mains (MV/LV)
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Smart Load Types

Supply mains
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SLQ

Single inverter (cheaper, lower losses)
Only Q support (Vg angle fixed at £90°)
Voltage OR Frequency regulation

Limited capability

Supply mains
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Load

SLBC

Two converters (expensive, higher losses)
Both P&Q support (Vz5 & 65 control)
Voltage and/or Frequency regulation
Wider capability
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London Proposed Method

Smart Load
applications
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Reduction in power imbalance by ®* Reduce voltage distortion at PCC
altering SL line currents both in by dropping harmonic voltage
amplitude and phase. [1] across non-critical load. [2]

[1]. Shuo Yan et al ‘Electric Springs for Reducing Power Imbalance in Three-Phase Power Systems’, IEEE Transactions on Power Electronics
[2]. Parag Kanijiya et al ‘Enhancing Power Quality and Stability of Future Smart Grid with Intermittent Renewable Energy Sources Using
Electric Springs’, International Conference on Renewable Energy Research.
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London Estimated Reserve
Load disaggregation using substation measurement

Load disaggregation using ANN BSP Load disaggregation

I L C1

Offline training process

Real time estimation of reserve within certain

confidence bounds

Only substation P,Q & V measurements

needed
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Time(Hr)
Does not rely on smart meter data, customer 20 ——— T
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Reference: D. Chakravorty; B. Chaudhuri; S. Y. R. Hui, “Estimation of Aggregate Reserve with 00 2I 4;, 6I sl 1Io 1I2 1I4 1I6 1I8 2I0 2I2 24

Point-of-Load Voltage control," in IEEE Transactions on Smart Grid , pp.1-10 Time(Hr)
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London Estimated Reserve
Estimated Enhanced Response from domestic sector

A case study in GB domestic sector Validation of bounds on estimated reserve
(a) o5

W
(=}

Jan
Feb
Mar
Apr
— May
—Jun

Jul
— Aug
Sep
Oct
Nov
W, 'y Y, ) Dec
sSgssssssssg8sssssssss8888 § g v —k— 90% UB
S8 3LEBEBIS QOIS 8SHa3 % 90% LB

N
%)

—Jan
—Feb
—Mar
—Apr
—May
—Jun
—Jul
—Aug
—Sep
—0Oct
S —Nov
5 4 —Dec

[\
(=}

—
@)

10

—
T

Reserve (GW)

o
(&)

GB domestic sector demand (GW)
@

Time(Hr) ol
(b) 0 2 4 6 8 10 12 14 16 18 20 22 24
— T T Time(Hr)

—*— 90% UB
MP
——90% LB

= Most probable estimated reserve around 0.5GW
from midnight till 8am and a peak value of 1.5GW
around 6pm

= GB domestic sector alone could provide
significant part of 800-950MW enhanced response
required under future low inertia scenario

GB domestic sector reserve(GW)
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London Frequency Regulation
J1zone reduced equivalent GB system

= Aggregated load at each bus divided
into critical and non-critical/controllable

loads in proportion to the actual load

classification

» Non-critical loads operated as smart

loads

» Nuclear plant in Zone22 tripped

= Qutage is around 2GW, slightly higher

than spinning reserve of 1.8GW
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London Frequency Regulation
Frequency/RoCoF: Dynamic variations

Frequency(Hz)

RoCoF (Hz/sec)

Base case (6.5% NSG) Low inertia scenario (20% NSG)
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SLs effectively arrest frequency nadir = Similar disturbance results in more
and improve RoCoF severe frequency excursion and RoCoF
RoCoF values calculated using 100 ms = More primary reserve required to
sliding window tackle disturbance in future

Reference: D. Chakravorty; B. Chaudhuri; S. Y. R. Hui, "Rapid Frequency Response From Smart Loads in Great Britain Power System," in IEEE Transactions on Smart
Grid , pp.1-10
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Frequency Domain Analysis

Study Network

Line parameters
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Studied Scenarios

Parameter
Variation

L1 & L2 Location of Electric Spring
with respect to the substation

L3 Proximity of adjacent Electric
Springs

R/X ratio Dense urban (R/X=4) to

sparse rural (R/X=10) LV
network as well MV network
(R/X=1)

= Small signal stability analysis of distribution network with (a) ESs (series converter)
(b) STATCOM or DG inverter (shunt converter)

= Dynamic response of state variables in linearized model validated with non-linear

model

= Network parameters varied to see movement of critical system modes

Reference: D. Chakravorty; B. Chaudhuri; S. Y. R. Hui, “Small Signal Stability Analysis of Distribution Networks with Electric Springs," in IEEE Transactions on Smart Grid ,

pp.1-10
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London Small Signal Stability Analysis
Distance from Suhstation

(a) with Electric Spring (b) with DG inverter
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= Length of line segments L1 & L2 varied keeping everything else constant

» Movement of 472 Hz & 369 Hz modes away from the imaginary axis

= With ES, modes are much further away compared to the case with DG inverters

Reference: D. Chakravorty; B. Chaudhuri; S. Y. R. Hui, “Small Signal Stability Analysis of Distribution Networks with Electric Springs," in IEEE Transactions on Smart Grid ,
pp.1-10
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London Small Signal Stability Analysis
Proximity of Adjacent Converters

(a) with Electric Spring 5 X 10* (b) with DG inverter
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= Length of line segment L3 is varied to represent electrical proximity of adjacent
ES or DG inverters (installed at POC of a cluster of customers)

= Separation distance has hardly any influence on the modes
» DG inverters in close electrical proximity will result in modes > 10 kHz

Reference: D. Chakravorty; B. Chaudhuri; S. Y. R. Hui, “Small Signal Stability Analysis of Distribution Networks with Electric Springs," in IEEE Transactions on Smart Grid ,
pp.1-10
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London Small Signal Stability Analysis
Distribution Network Voltage Level

(a) with Electric Spring (b) with DG inverter
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» R/Xratio of line segments varied between 1 (MV) to 10 (LV-sparse rural network)
= Dominant participation in the 472 Hz & 369 Hz modes
=  With higher R/X ratio, modes move further to the left due to higher damping

= Similar effect is observed in case of DG inverter

Reference: D. Chakravorty; B. Chaudhuri; S. Y. R. Hui, “Small Signal Stability Analysis of Distribution Networks with Electric Springs," in IEEE Transactions on Smart Grid ,
pp.1-10
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= Electric Springs are not likely to threaten the small signal stability of the

network.

=  Stability margin of Electric Spring is higher than equivalent penetration

of DG inverters
» Significant reserve can be unlocked through point-of-load voltage control

» Enhanced response from smart loads can effectively support the grid

frequency in the event of a large disturbance
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Thank You
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Estimated Reserve

ilpad Sectors in GB

—

Service

’

Industry

= Space heating Service sector loads

" Water heating > Dominated by lighting load
= Cooling and ventilation

= Lighting

= Other (catering,computing etc)

Industrial sector loads
= Space heating

= Drying/separation » Dominated by industrial motor

= Industrial Motor

= Compressed air

= Lighting

= Refrigeration

= Other (high temp/low temp process etc)

1. Department of Energy and Climate Change (2014). Energy Consumption in the UK Overall data tables 2014 update. [Online].
Available:https://www.gov.uk/government/statistics/energy-consumption-in-the-uk
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London Estimated Reserve
Reserve from smart loads (SLs)

Reserve from non-motor SLs Reserve from motor SLs

= Estimated reserve =1.7 GW = Estimated reserve = 0.8 GW

= Lighting load provides maximum reserve " 80% of (industrial + commercial) motor

| DOL type.
= Essential public service lighting (e.g. oads are DOL type

healthcare, transport) not included = Out of remaining 20%, 30% of motor

drives are for critical application

Total reserve from non-motor and motor smart " DOL motors and critical application

loads = 2.6 GW (considering conservative figures motors not considered
for load factor and node voltages)

Reference: D. Chakravorty; B. Chaudhuri; S. Y. R. Hui, "Rapid Frequency Response From Smart Loads in Great Britain Power System," in IEEE Transactions on Smart
Grid , pp.1-10
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London Vector Control
Choice of reference frame
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(a) D-axis aligned with PoC voltage (b) D-axis aligned with capacitor voltage

= Aligning d-axis with PoC voltage results in non-zero inverter current on both axes
= Not possible to ensure zero active power exchange in steady state

= Aligning with filter capacitor voltage enables d-axis control loop to maintain dc link
voltage while g-axis can be used for regulating PoC voltage



