

Future Power Networks & Smart Grids Centre for Doctoral Training

Medium Voltage DC

Freeing up latent grid capacity quickly and affordably

Lewis Hunter

SC B4 - HVDC and Power Electronics

(PS 2 / MVDC / LVDC and Power Electronics for Distribution Systems)

Engineering and Physical Sciences Research Council

- Motivation
- Introduction to UK Distribution
- What is MVDC?
- Trial Network
- Future Work
- Conclusion

The Future ?!

Network Support

Network Support

Network Support

How can we support increasing low carbon technology: sustainably, securely, cost effectively?

MVDC?

- Power ratings 10-100 MVA
 Wind
 - Machine Applications
- Voltage range 5-50 kV
 - Beyond single power electronic device rating

MVDC?

Imperial College London

- Power ratings 10-100 MVA
 Wind
 - Machine Applications
- Voltage range 5-50 kV
 - Beyond single power electronic device rating

Issue!

MVDC Activity

Imperial College London

Soft Open Point

(Back to Back converter)
Interconnects adjacent feeders
DC Bus Voltage c. 750 → 1200 V

EMBEDDED MVDC LOAD FLOW STUDIES

University of Strathclyde Glasgow

Network Parameters

Imperial College London

ID	Name	Firm Capacity MVA	Pmax MVA	Pmin MVA
GSP1	Coylton	60	43.49	10.87
GSP2	Kilmarnock South	120	33.47	8.37
(5)*	Harehill WF	13		
7*	Harehill WF (ext)	33		
9*	Gallowrig WF	21.6		
(14)*	Bankend Rig WF	14.3		

Line	Rating (MVA)	Distance (km)
1	20.86	8.01
2	38.81	8.48
3	41.2	0.01
4	38.81	6.29
5	29.43	13.68
6	20.86	0.025
7	20.86	6.25
8	24.63	12.56
9	20.86	0.21

Line ratings: $20 \rightarrow 40$ MVA Line lengths: $6 \rightarrow 14$ km

Primary Substations: $2 \rightarrow 24$ MVA DG (wind): $13 \rightarrow 33$ MVA

Voltage maintained to 1 ± 0.03 pu

Base Study

Base Study

MVDC Embedded Link

MVDC Embedded Link

B2B Converter (SNOP) Addition

University of

Strathclyde

B2B Converter (SNOP) Addition

University of

Strathclyde

Increased DG

Increased DG

- Protection
 - Weak grid fault studies & minimum protection requirements
 - Line repurposing considerations
- Control
 - DC links (operation mode? changing mode?)
 - How do we set link transfers with limited network information. Setting multiple links?
- Stability
 - Oscillation (DC links and/or embedded PE)
 - Recirculation of power?

- Drivers, barriers, TRL for MVDC identified
- Case study
 - Small amounts of control have big capacity release
 - Increasing line capacity isn't always the answer
- Future work areas and opportunities for further research

Future Power Networks & Smart Grids Centre for Doctoral Training

Questions?

Lewis Hunter University of Strathclyde, Glasgow, Scotland lewis.hunter.100@strath.ac.uk

