

### **Grid Support from Electrified Rail Transportation**

**Prof Kang Li School of Electronic and Electrical Engineering University of Leeds** k.li1@leeds.ac.uk



- Introduction
- Railway energy hubs
- Congestion and curtailment reduction
- Ancillary service
- ❖Inertia support

### Introduction



#### Potentials of Electrified Railway Networks to Support Power Grid

#### GB railway network

- **❖ 20,000** miles of track, 39% electrified, 2040/2035
- Coupling with HV power grid

#### **GB** Power network

❖ 5,340 miles transmission line



#### **Potential Support:**

- Inertia support
- \* Reduce curtailment and congestion
- Flexibility and ancillary services
- Improve energy efficiency

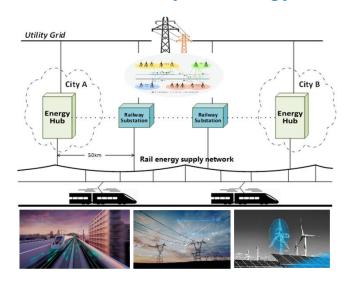
### Introduction



- Introduction
- Railway energy hubs
- Congestion and curtailment reduction
- Ancillary service
- ❖Inertia support

## Railway energy hubs




#### Challenges in Railway Electrification

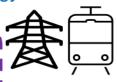
- Network Rail is the largest electricity consumer in the UK, consuming over ~4TWh annually (=1.5 million homes)
- "Inflexible" Power Demand: driven by rail timetables
- Only 39% of rail routes are currently electrified
- Railway Decarbonization: entails ~3TWh increase in demand
- **High Investment Cost**: £1-2.5m per single track kilometer

## Railway energy hubs



#### Concept and Functionality of Energy Hubs




#### Key technology:

- DC/AC microgrids
- Hierarchical Control
- Digital twin

#### Potential Services from Energy Hubs:

#### Services to the electricity grid

- Demand flexibility services (inc. mitigation of wind power curtailment)
- Grid power balancing (frequency regulation)

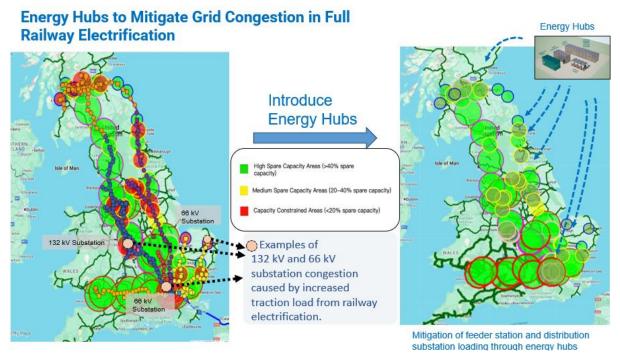




#### Services to the railway

- Traction voltage regulation for electrified routes
- Battery train charging for non-electrified routes
- Backup power supply for rail depots
- •Electricity cost saving (solar generation and low-tariff purchase)




- Introduction
- Railway energy hubs
- Congestion and curtailment reduction
- Ancillary service
- ❖Inertia support

## Congestion and curtailment reduction



#### **Wind Curtailment:**

- Wind curtailment payments are given to operators for switching off turbines, typically when high winds and a high concentration of wind farms and the excessive energy can not be transported to where it is needed.
- The cost is added to domestic electricity bills, heaping more burdens on households.





- Introduction
- Railway energy hubs
- Congestion and curtailment reduction
- Ancillary service
- ❖Inertia support

## **Ancillary service**

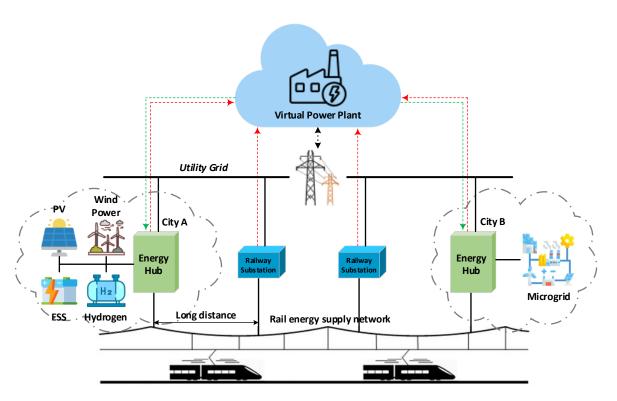






#### **Dynamic service delivery requirements:**

| Service<br>specification     | Description                                                                                    | DC         | DM         | DR         |
|------------------------------|------------------------------------------------------------------------------------------------|------------|------------|------------|
| Initiation time              | The maximum time between<br>a change in frequency and<br>change in the delivery of<br>response | 0.5s       | 0.5s       | 2s         |
| Max time to full<br>delivery | The maximum time between frequency deviation occurring and delivery of the saturation quantity | ls         | ls         | 10s        |
| Delivery duration            | Time that an energy limited<br>provider must be capable of<br>sustained delivery               | 15 minutes | 30 minutes | 60 minutes |


During the evening, when there is no traction load demand, the energy hub provides frequency response services to the power grid.

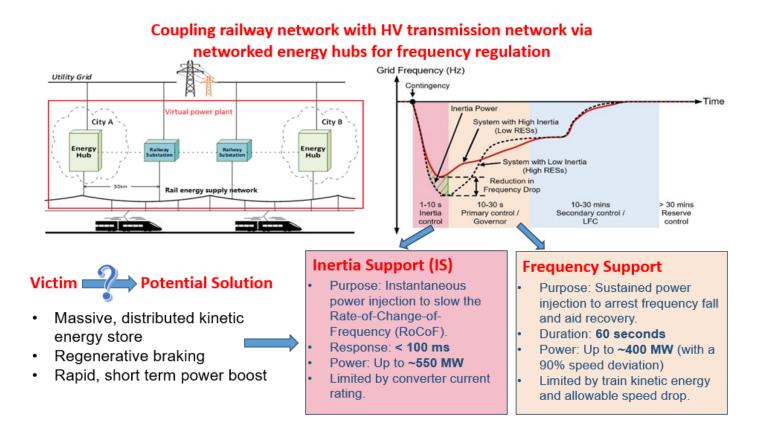
## **Ancillary service**



### **Networked Energy Hubs**

- Aggregates multiple hubs (traction, storage, renewables)
- Provides system-level ancillary services
  - Frequency regulation
  - Virtual inertia support
  - Peak shaving & valley filling
- Enhances integration with power grid & markets




Core idea: Coordinated control for networked-energy- hubs-based VPP



- Introduction
- Railway energy hubs
- Congestion and curtailment reduction
- Ancillary service
- ❖Inertia support

## **Inertia support**





C. Henderson, A. Egea-Alvarez, J. Rull-Duran, M. Nedd, P. N. Papadopoulos and L. Xu, "Inertia and Frequency Support From Britain's AC Powered Trains," in *IEEE Transactions on Sustainable Energy*, vol. 14, no. 2, pp. 1259-1268, April 2023, doi: 10.1109/TSTE.2022.3221192.

## Summary



- Electrified railway transport supports power grid operation
- Railway energy hubs offer services to both railway and power grids
- Day-time grid support: running trains provides inertia support
- ❖Night-time: energy hubs provide ancillary and flexibility services



# Thank you!

#### Acknowledgement















