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= BACKGROUND

More and more renewable energy sources (RESs) are integrated into the power system to mitigate the
environmental pollution. Benefited from policy support and technological progress, the supplied
energy from RESs in UK increases rapidly.

British renewable source utilization:

» Producing about 41% of all its energy
needs from RE in 2025.

» Achieving 95% of the electricity from
clear power in 2030.

» Reaching 100% of its energy needs
from RE by 2050 (Net Zero).

Among them, inverter-based resources (IBRs) account for a big share. However, IBRs are connected to
the power grid by power electronics, so IBRs will have different fault characteristics.
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= BACKGROUND

Compared with synchronous generators (SGs), IBRs show different fault behaviors.

J

B Lasts for tens to hundreds of ms. B Lasts for only 20 to 40 ms.
B Dozens of times the rated current. B The maximum is 1.2 to 1.5 times.
B Stable sequence impedance angle. B Impedance varies from -180° to 180°.

These fault characteristics will threaten the correct operation of traditional protective relays since they are
designed according to the fault behaviors of SGs.
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1 Operating Challenges for Protection
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Problem for Directional Relays

For SG-based power grid

Equivalent network before a fault
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Equal to the negative value of to the SG impedance!

For IBR-integrated power grid
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Equivalent network during a fault

For relay point R1: . _
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No definite physical meaning!
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Problem for Directional Relays

Positive-sequence
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The measured impedance angle for AG faults under Danish FRT
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The measured impedance angle for AG faults under Danish FRT

1.The measured current of positive-sequence directional elements is controlled by current references.

2. Positive- and negative-sequence directional elements will be affected under Danish FRT, but zero-sequence directional

elements is not affected since the zero-sequence fault loop does not include the IBR impedance.
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Problem for Distance Relays

For SG-based power grid
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Current phasors between both sides

For IBR-integrated power grid
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Current phasors between both sides

= Similar current angles

= Similar current amplitudes

Large current angle difference

Large current amplitude difference

For apparent impedance at the relay point:

I .
£ Rg Additional

I, impedance
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Due to the similar angle, the additional impedance is
dominated by the resistive component, so a
quadrilateral characteristic with a large resistive reach is

often used.

For apparent impedance at the relay point:

Additional
impedance

The additional impedance has a large amplitude and
present an inductive or capacitive feature.

Original distance relays will fail to operate.
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Problem for Distance Relays

A fault occurs at the midpoint of the line with 10 Q of fault resistance

Reactance (€2)

X 90.814
Y 15680

L]
x Line replica
1 impedance

Reactance (Q2)
A
S

— e 70ne [

Zone 11 —8— Trajectory

20 0 20 40 60 80 100 120 140 140

X 38.903

- <+—— Trajecto
Y131.()83,®\ jectory _—

Resistance () -20

The performance for an AG fault under Danish FRT
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The performance for a BC fault under Danish FRT

* The impact of the IBR integration is not very large for AG fault due to zero-sequence current.

= Distance relay faces severe challenges for BC faults and ABCG faults.
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. Active control-based Protection
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Control-based solution

Protection principle —— The required current angle ——

Trigger traditional protection

FRT design

Core 1dea of control-based solution
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The fault current of IBRs

Decoupled current control (DCC control): The fault current

only includes the positive-sequence component:
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Control-based solution for directional relays

Since sequence fault currents of IBRs can be controlled, so we can set the suitable current references to make the

measured impedance angle of positive- and negative-sequence directional elements restore to -90°.

Ve

A
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— Control-based solution for directional relays

The measured impedance angle of negative-sequence directional elements can be also adjusted in a similar way. In addition, the

short circuit capacity can be fully utilized by an iterative method.

Negative-sequence directional element }

The measured impedance angle is:

A o)

17|

Impedance angle
Make this impedance angle equal to -90°:

o, =@, +90°

Constraints for current references:
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Positive- and negative-seq distribution J

At first, using scalar sum to distribute

I ax =|Il|+|12| =(l+ﬂ)|ll|

However, the phase current should be the phasor sum, so
the short-circuit capacity is not fully used. To solve this
problem, First, the relationship between three-phase
current and sequence currents:

IL,|= J|11|2 {1, +2|1,||1,|cos Acx

1=l +|LF 2111 eosaa - 607

(=l +{1f = 2] os(aar+607)

Then an iterative algorithm is proposed.
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Control-based solution for directional relays
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After the inverter detect a fault, the IBR will perform the proposed FRT control, and then the relay can
determine the fault direction correctly.
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Control-based solution for directional relays
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reach the current limiting value.
The measured current and the impedance angle for AG faults under the

proposed control. (a) current, (b) positive-sequence, (c¢) negative-sequence
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Control-based solution for directional relays

Fault resistance } Short circuit ratio
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The measured impedance angle is always close to -90°, so the proposed control method can make directional elements

operate properly under different fault resistances and different short circuit ratios.
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Control-based solution for distance relays

If the phase angle of M,,, My and M, can be controlled to 0°, the additional impedance will be a purely resistive component,

so the apparent reactance will be equal to the line fault reactance.
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Control-based solution for distance relays

The required current angle for BC and BCG faults can be obtained in a similar way, so here it is not repeated. In this part, the

corresponding control strategy will be designed to make IBRs generate the required current angle.

DCC control }
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To generate this required negative-sequence current angle, the first

constraint for current references can be obtained:
I
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All the current references must be scaled down to prevent overcurrent:

]1,dref — Ildref M, I]’qref = Ilqre%w Mo | \/(|11dref +|12dref )2 +(|11qref +|I2qref )2
I — Lgres I = 1 2qr6% B n
2dref M’ “2aref M

19/22



Control-based solution for distance relays
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The amplitude and angle of M,, and the apparent impedance

close to the line fault reactance of 10.368 Q regardless of DCC control or DSC control.

We can see that the phase angle of My and M,, can be controlled to 0°, so the apparent reactance of distance relays is
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