DBGESA

Optimal allocation of energy storage in the GB grid for renewable curtailment reduction through open-source software development

Dr. Sobhan Naderian

Dr. Marko Aunedi

CIGRE-UK Knowledge Sharing Event Imperial College London 14th Oct 2025

Contents

- Objectives
- Open-source modelling
- GB grid implementation in PyPSA
- Short-term and long-term optimization
- Scenarios for storage optimal allocation
- Conclusion
- Future work

Key objectives

- Explore how placing energy storage in the network could enable better integration of renewables in the short- to medium-term
- Improve geographical resolution of available optimisation models to adequately address the locational benefits of energy storage
- Implement optimisation model in an open-source framework

Why Python?

Open source

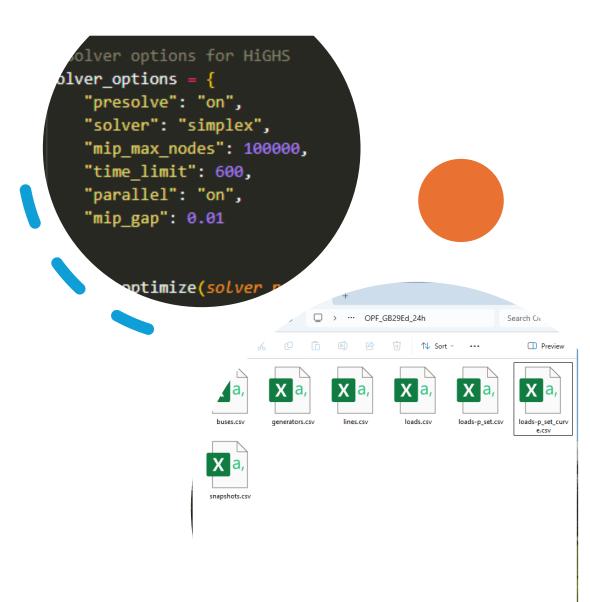
Wide availability of libraries

Research community increasingly adopting Python / open-source

Can be linked with machine learning libraries

Available Python libraries for power system analysis

- PyPSA
- Pandapower
- PYPOWER


PyPSA is used extensively in Europe by researchers and regulators (ACER / FNA).

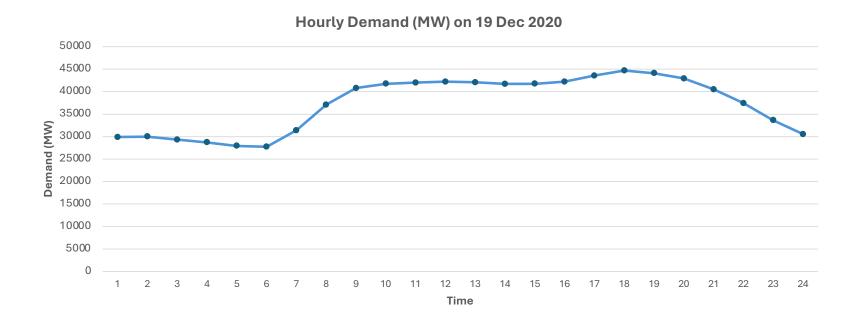
	PyPSA	pandapower	PYPOWER			
Purpose	Power system simulation and optimization	Power flow and grid analysis	Power flow and optimal power flow			
Power Flow Analysis	Yes	Yes	Yes			
Optimal Power Flow (OPF)	Yes	Yes	Yes			
Multi-Period Optimization	Yes	No	No			
AC/DC Network Support	Yes	AC only	AC only			
Large Scale Analysis	Yes	No	No			
Renewable Energy Modeling	Yes	Limited	Limited			
Documentation and examples	Very limited	Limited	N/A			

Optimal Power Flow in PyPSA – CSV Files

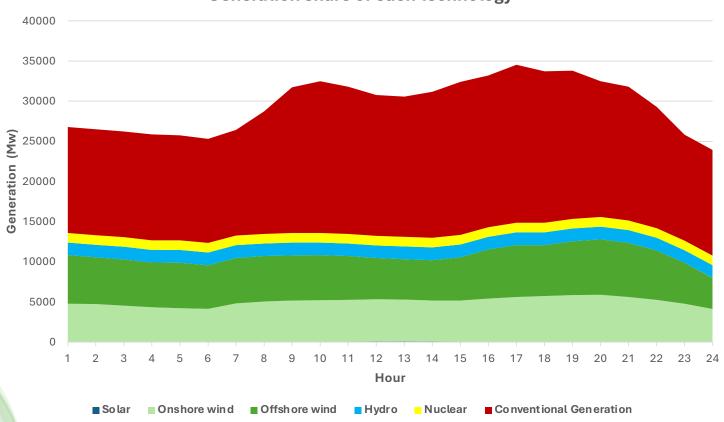
- Model takes inputs in the form of CSV files for various aspects of the power system (generators, demand, lines, etc.)
- For running the optimal power flow, the main CSV files are snapshots.csv and generators.csv
- Optimal power flow is executed by the optimize function in PyPSA
- Possibility to use different solver packages

GB Reduced Network \

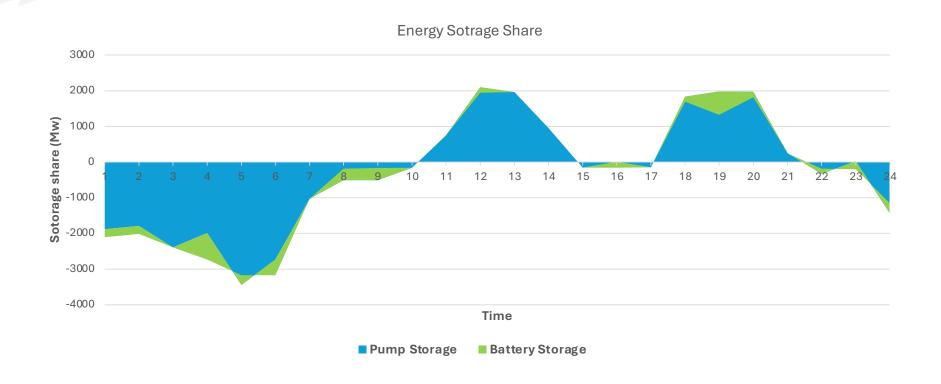
 This system is adopted from the data from Edinburgh University, available here:

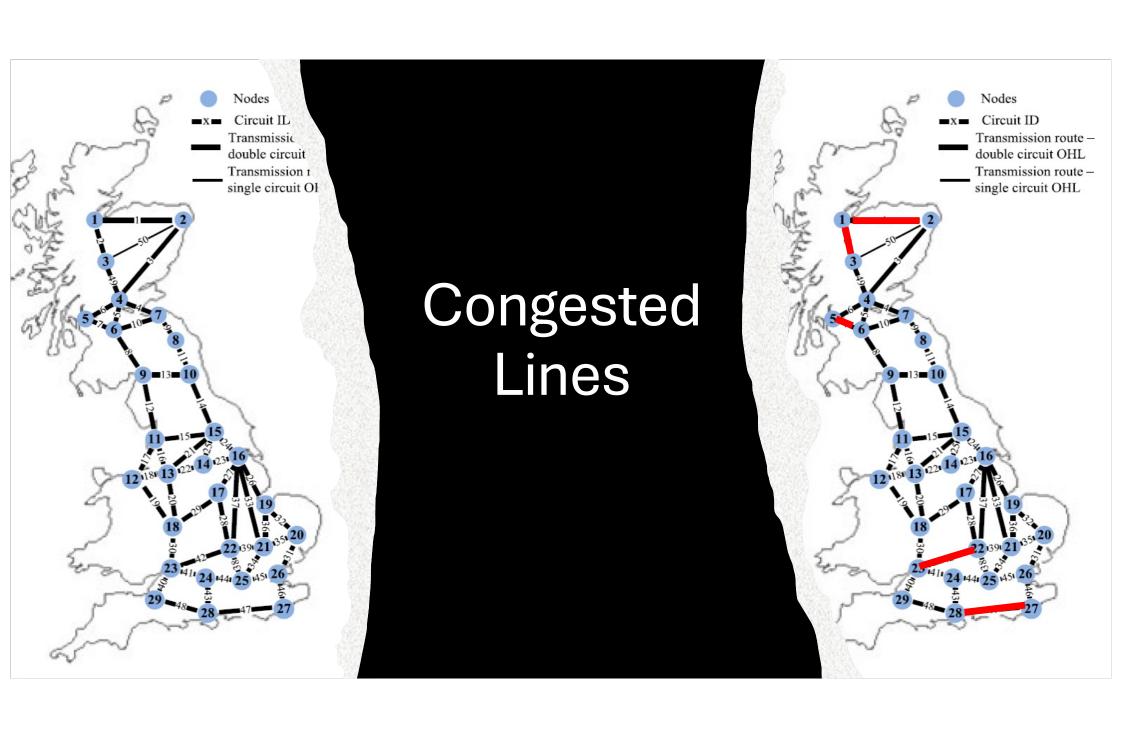

https://www.maths.ed.ac.uk/OptEnergy/NetworkData/reducedGB/

- It has 29 buses, 66 generators, and 99 transmission lines
- Originally implemented in MatPower, and we transferred it to PyPSA
- Also added interconnectors and HVDC "bootstraps" (not shown in map)


- System details (lines, buses, links, and conventional generators) haven't changed compared to the Edinburgh model
- The demand for a winter day in 2020 has been calculated based on Elexon raw data
- Renewable and conventional generation details are adopted from DUKES
- Gurobi optimizer has been used for the OPF
- Model outputs include generation and storage dispatch, line utilisation, RES curtailment and total operation cost
- Weather data has been adopted from <u>Renewables.ninja</u>

Hourly Demand




Generation output

Energy Storage operation

Technology	Curtailment (MWh)
Battery Storage	71,995
Pumped Storage	121,886
Conventional generation	666,746
Wind Offshore	15,622
Wind Onshore	52,727

Total Curtailment

- System details (lines, buses, links, and conventional generators) haven't changed compared to the Edinburgh model but all the planned interconnectors are added till 2040
- Simplified modelling of interconnectors using export/import prices
- Electricity demand for a week in December (12-18 Dec) used as input
- Renewable and conventional generation details are adopted from a dataset published in FES 2024
- We consider energy storage installation (batteries) in Scotland

Peterhead Beauly Errochty Denny/Bonnybridge Nedstanjaven Eccles Denmark Harke Stella West Renwineriatan/Dray/Eggborough
Th. MHSb/Stadasbldge
Deeside Ireland Ireland2 Sundon/East Religer Bramford Netherlands MelkshamBramley
S.W.Penisulavedean
Sellindge Belgium France2

GB 29 Bus Reduced Network with Interconnectors 2040

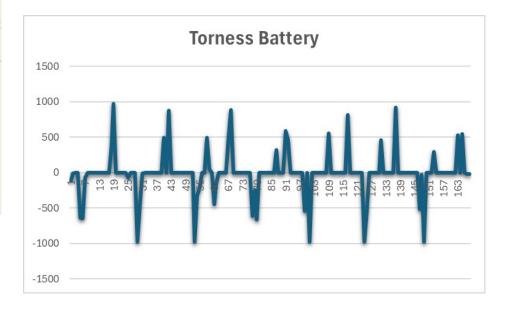
INFO:gurobipy:

Solved in 1529 iterations and 0.68 seconds (0.32 work units)

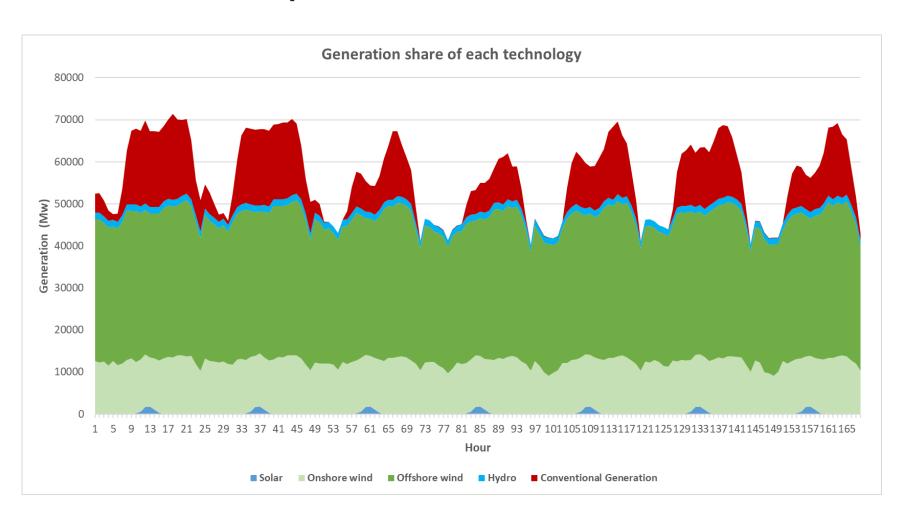
INFO:gurobipy:Solved in 1529 iterations and 0.68 seconds (0.32 work units)

Optimal objective 4.977565185e+07

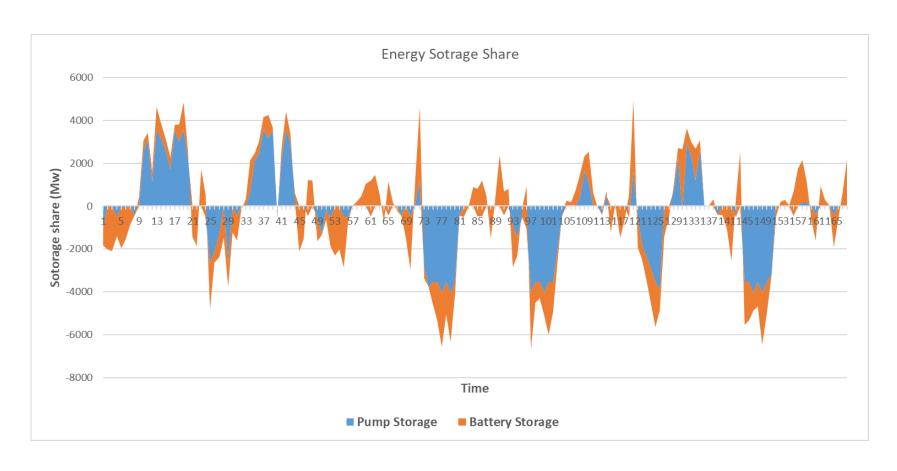
INFO:gurobipy:Optimal objective 4.977565185e+07 INFO:linopy.constants: Optimization successful:


Status: ok

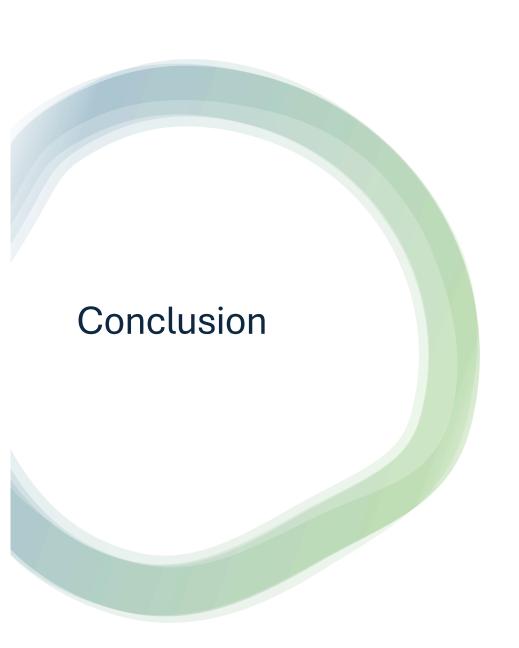
Termination condition: optimal


Solution: 44627 primals, 110086 duals

Objective: 4.98e+07 Solver model: available

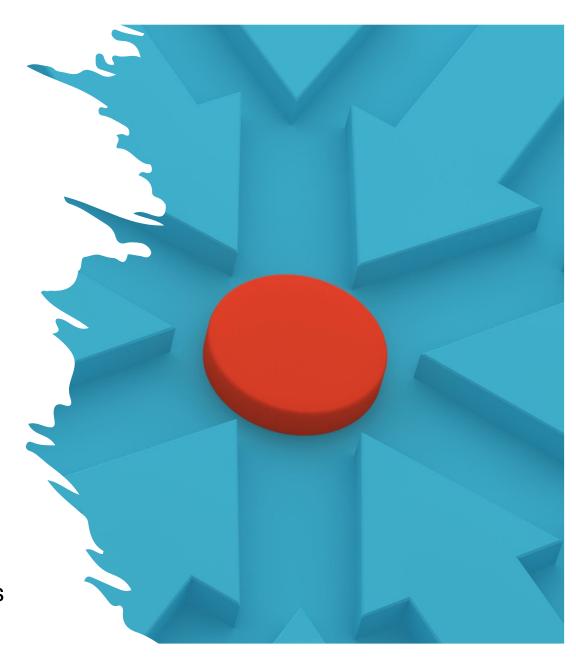

Solver message: 2

Generation output



Energy Storage operation

Congested Lines


		1		1					1			1		1			1	
snapshot	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	
12/12/2040 0:00	-0.52146	1	-0.52146	1	0.57653	0.57653	0.12064	0.12064	1	0.56894	0.76197	1	1	1	-0.63311	-0.41252	1	
12/12/2040 1:00	-1	1	-1	1	0.67844	0.67844	0.12101	0.12101	1	0.56984	0.76318	1	1	1	-0.6286	-0.40959	1	
12/12/2040 2:00	-1	1	-1	1	0.68041	0.68041	0.12468	0.12468	1	0.56615	0.75824	1	1	1	-0.64704	-0.4216	1	
12/12/2040 3:00	-0.98681	1	-0.98681	1	0.67971	0.67971	0.12858	0.12858	1	0.58553	0.78419	1	1	1	-0.55022	-0.35852	1	
12/12/2040 4:00	-1	1	-1	1	0.68412	0.68412	0.13156	0.13156	1	0.61094	0.81823	1	1	1	-0.42324	-0.27577	1	
12/12/2040 5:00	-0.4973	1	-0.4973	1	0.57666	0.57666	0.13043	0.13043	1	0.61991	0.83023	1	1	1	-0.37845	-0.24659	1	
12/12/2040 6:00	-0.53211	1	-0.53211	1	0.57647	0.57647	0.11633	0.11633	1	0.56978	0.7631	1	1	1	-0.62888	-0.40977	1	
12/12/2040 7:00	-1	1	-1	1	0.6648	0.6648	0.09565	0.09565	1	0.59602	0.79825	1	1	1	-0.49778	-0.32434	1	
12/12/2040 8:00	-0.61272	1	-0.61272	1	0.57604	0.57604	0.08367	0.08367	1	0.60229	0.80664	1	1	1	-0.46646	-0.30394	1	
12/12/2040 9:00	-1	1	-1	1	0.65468	0.65468	0.07684	0.07684	1	0.6137	0.82192	1	1	1	-0.40946	-0.2668	1	
12/12/2040 10:00	-0.62903	1	-0.62903	1	0.57596	0.57596	0.07707	0.07707	1	0.61383	0.82209	1	1	1	-0.40883	-0.26639	1	
12/12/2040 11:00	-1	1	-1	1	0.65403	0.65403	0.07563	0.07563	1	0.6214	0.83223	1	1	1	-0.37098	-0.24173	1	
12/12/2040 12:00	-0.6352	1	-0.6352	1	0.57593	0.57593	0.07457	0.07457	1	0.60752	0.81364	1	1	1	-0.44034	-0.28692	1	
12/12/2040 13:00	-1	1	-1	1	0.65435	0.65435	0.07622	0.07622	1	0.59703	0.79959	1	1	1	-0.49276	-0.32108	1	
12/12/2040 14:00	-0.62615	1	-0.62615	1	0.57597	0.57597	0.07823	0.07823	1	0.61259	0.82043	1	1	1	-0.41503	-0.27043	1	
12/12/2040 15:00	-1	1	-1	1	0.65478	0.65478	0.07702	0.07702	1	0.60898	0.8156	1	1	1	-0.43306	-0.28217	1	
12/12/2040 16:00	-0.64532	1	-0.64532	1	0.57587	0.57587	0.07047	0.07047	1	0.57736	0.77325	1	1	1	-0.59105	-0.38511	1	
12/12/2040 17:00	-1	1	-1	1	0.64973	0.64973	0.06762	0.06762	1	0.61975	0.83002	1	1	1	-0.37924	-0.2471	1	
12/12/2040 18:00	-0.65093	1	-0.65093	1	0.57584	0.57584	0.0682	0.0682	1	0.60038	0.80407	1	1	1	-0.47604	-0.31018	1	
12/12/2040 19:00	-1	1	-1	1	0.65284	0.65284	0.07341	0.07341	1	0.61732	0.82676	1	1	1	-0.39139	-0.25503	1	
12/12/2040 20:00	-0.61803	1	-0.61803	1	0.57602	0.57602	0.08152	0.08152	1	0.59634	0.79867	1	1	1	-0.4962	-0.32331	1	
12/12/2040 21:00	-1	1	-1	1	0.66359	0.66359	0.0934	0.0934	1	0.59078	0.79123	1	1	1	-0.52396	-0.34141	1	
12/12/2040 22:00	-1	1	-1	1	0.6704	0.6704	0.10607	0.10607	1	0.5986	0.8017	1	1	1	-0.48491	-0.31596	1	
12/12/2040 23:00	-1	1	-1	1	0.67735	0.67735	0.11898	0.11898	1	0.57991	0.77667	1	1	1	-0.57829	-0.3768	1	
13/12/2040 0:00:0	-0.51736	1	-0.51736	1	0.57655	0.57655	0.1223	0.1223	1	0.57111	0.76488	1	1	1	-0.62227	-0.40546	1	
13/12/2040 1:00:0	-1	1	-1	1	0.679	0.679	0.12206	0.12206	1	0.56818	0.76095	1	1	1	-0.63691	-0.415	1	
13/12/2040 2:00:0	-0.50515	1	-0.50515	1	0.57662	0.57662	0.12725	0.12725	1	0.61469	0.82324	1	1	1	-0.40454	-0.26359	1	
13/12/2040 3:00:0	-1	1	-1	1	0.68363	0.68363	0.13065	0.13065	1	0.56429	0.75575	1	1	1	-0.65632	-0.42765	1	

- Open-source PyPSA-based model adopted and adapted for the GB transmission grid (steep learning curve) – to be used in future projects
- Reviewed input data sources (FES, online databases) – some input data issues still to be sorted
- Validated and ran case studies for the GB system for illustrative scenarios
- Energy storage helps with RES integration and carbon reduction, but effect can be limited by transmission constraints – significant reinforcement required
- Working on adapting the model for investment optimisation

Ongoing/future work

- Extend simulation of GB-29 network for whole year
- Implement FES scenarios such as Holistic transition, incl. different scenarios for storage placement
- Co-optimise location-specific storage investment (including both "standard" and heuristic optimisation methods) and transmission expansion
- Consider different storage duration (short-term vs. long-term)
- Assess the impact of battery degradation on investment decisions

