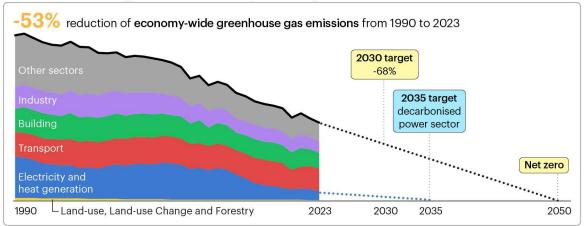


Modelling and Control of a Hydrogen Plant

Qiaohui He

Supervisor: Prof. Xiaowei Zhao


Intelligent Control and Smart Energy (ICSE) research group, University of Warwick

- Background and why we are doing it About Hydrogen / Why need dynamic model for hydrogen system
- Modelling and control of electrolyser About Electolyser modelling / Electrolyser system control
- Modelling and control of fuel cell About Fuel cell modelling / Fuel cell system control
- Electrolyser and Fuel Cell system for DIgSILENT/Power factory About realization of modelling and control for fuel cell and electrolyser system in DIgSILENT /Power factory

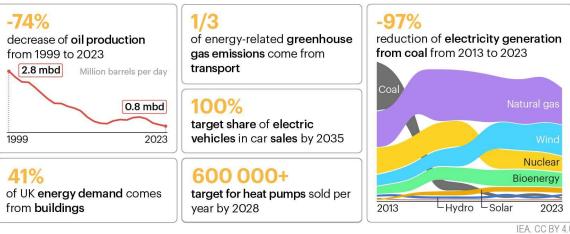
Background

The United Kingdom is halfway on its path to Net Zero

- The UK government has planned the production of **10GW** low-carbon hydrogen by 2030 and **240-500 TWh** low-carbon hydrogen supply by 2050 [1].
- The British Energy Security Strategy set the target to 10 GW by 2030, with at least half coming from electrolytic hydrogen, and up to 1 GW of electrolytic hydrogen by 2025 [2].

Model requirements

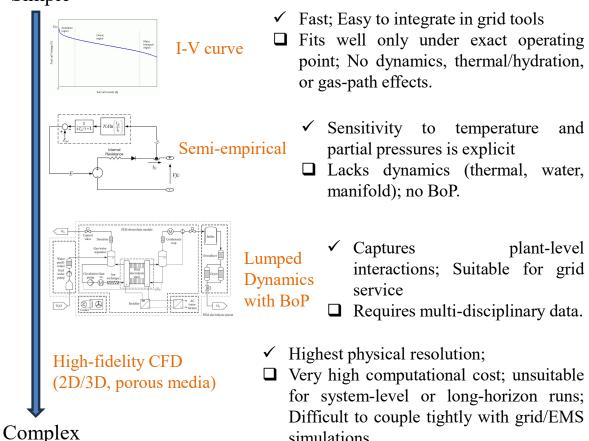
• Power factory:


Do not have electrolyser model;

Fuel cell model is considered as static generator which only set P,Q value without detailed and BoP.

• MATLAB:

Closed library composition;


No direct path to PowerFactory

- [1] British Energy Security Strategy, 2022, https://www.gov.uk/government/publications/british-energy-security-strategy
- [2] IEA (2024), United Kingdom 2024, IEA, Paris https://www.iea.org/reports/united-kingdom-2024, Licence: CC BY 4.0 BoP: Balance of Plant

Background

Simple

simulations

Why a dynamic model instead of a simple source/load model?

- Safety & constraints are invisible in a simple source/load model
- Efficiency & H₂ production are state-dependent
- No dynamics, thermal or gas effects

What fidelity is "enough" for power system simulation?

- State-dependent V–I/η and H₂ production/consumption
- Basic dynamics (mass flow, partial pressure, thermal).
- BoP interactions

- Background and why we are doing it About Hydrogen / Intro of electrlyser/ Intro of fuel cell
- Modelling and control of electrolyser

 About Electolyser modelling / Electrolyser system control
- Modelling and control of fuel cell About Fuel cell modelling / Fuel cell system control
- Electrolyser and Fuel Cell system for DIgSILENT/Power factory

 About realization of modelling and control for fuel cell and electrolyser system in DIgSILENT /Power factory

Modelling of electrolyser



Fig.1 General layout of a PEM electrolysis system consisting of the PEM stack and module with power electronics and the EL subsystems for water purification, gas drying, and fine purification and cooling unit [1].

Modelling Points

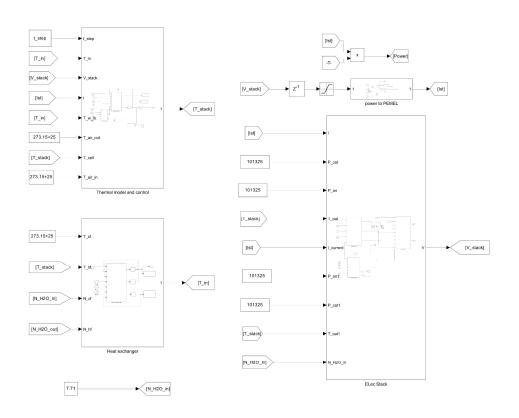
• PEM electrochemical stack model

Inputs: Stack current, stack temperature, partial pressure of each components

Outputs: Stack voltage

Mass flow inside the cell

Inputs: Stack current, stack temperature, partial pressure of cathode and anode, molar water flow Outputs: Water flux, interface concentrations/mole fractions, partial pressure of each components


Thermal model of the stack

Inputs: Stack current, environment temperature, molar water flow

Outputs: Stack temperature

[1] Bessarabov, Dmitri, et al., eds. PEM electrolysis for hydrogen production: principles and applications. CRC press, 2016.

Modelling of electrolyser

[T_stack] **►**∃ 2 P_cat 3 P_an 4 T_cat **→**1 +4 Cathode mass flow z⁻¹ ◀ p_O2_me 6 P_an1 7 P_cat1 C_02_me 8 T_cat1 9 N_H2O_in

Fig. 2 PEM electrolyser system model in MALAB/Simulink

Fig. 3 Electrolyser stack model in MATLAB/Simulink

Thermal control of electrolyser

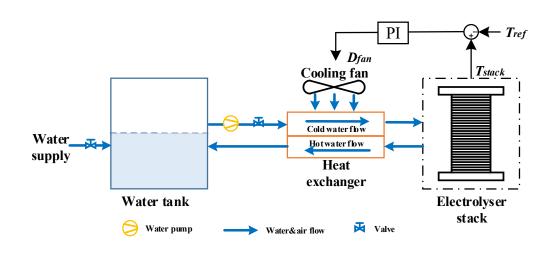


Fig. 4 PEM stack temperature control with BOP of the model.

Why Thermal Control Is Essential for Electrolyser

Thermal control is mandatory to keep the stack in its efficiency—lifetime optimal spot, preserve hydration, respect safety limits.

Control objectives:

Track temperature set-point with small steady-state error.

Inputs & Outputs:

Inputs: Molar Water flow, environment temperature, Stack

current and voltage

Outputs: Duty cycle of the fan

Constraints:

Hard limits: Maximum and minimum temperature.

Actuator limits: fan duty $\in [0,1]$

Simulation results



Fig. 5 V-I curve fitting results

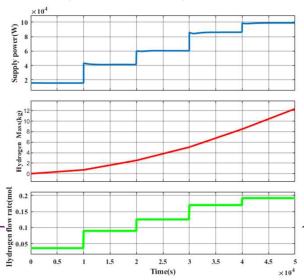


Fig. 6 Hydrogen generation curve

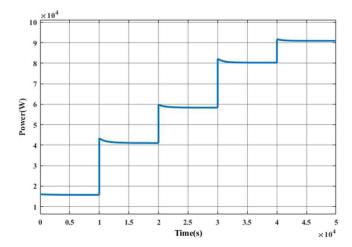


Fig. 7 Variation of power supply

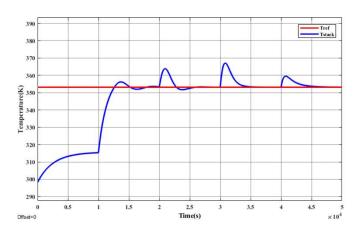


Fig. 9 Thermal control when the supply current changes

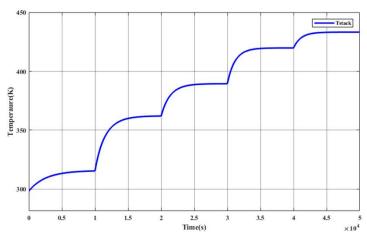


Fig.8Temperature performance of PEM electrolyser stack without thermal control of the Simulink

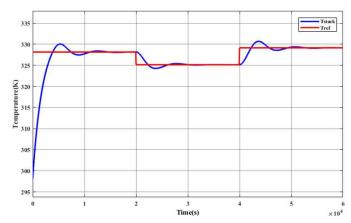


Fig. 10 Thermal control when the reference of temperature change under constant current

- Background and why we are doing it

 About Hydrogen / Intro of electrlyser/ Intro of fuel cell
- Modelling and control of electrolyser About Electolyser modelling / Electrolyser system control
- Modelling and control of fuel cell
 About Fuel cell modelling / Fuel cell system control
- Electrolyser and Fuel Cell system for DIgSILENT/Power factory

 About realization of modelling and control for fuel cell and electrolyser system in DIgSILENT /Power factory

Modelling of fuel cell

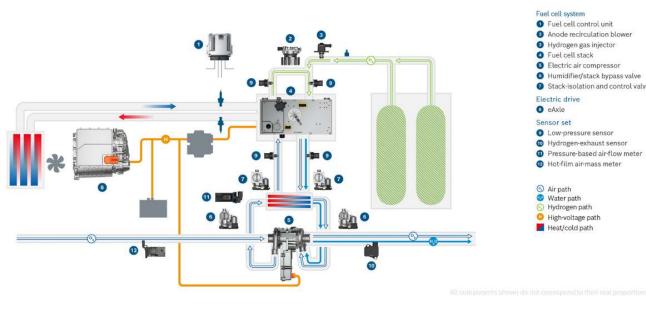


Fig. 11 PEM stack with BoP [1].

Modelling Points

Fuel cell stack model

Inputs: Mass flow rate of vapor, partial pressure, temperature of cathode, exit flow relative humidity

Outputs: Stack voltage, OER, cathode partial pressure, cathode mass flow, cathode output temperature

Outputs: Stack voltage, OER, cathode partial pressure, cathode mass flow, cathode output temperature

Oxygen Supply model

Inputs: Cathode partial pressure, compressor voltage, environmental temperature

Outputs: Mass flow rate of vapor, partial pressure, temperature of cathode, exit flow relative humidity

Cathode return manifold

Inputs: cathode mass flow, cathode output temperature

Outputs: return manifold partial pressure

Modelling of Fuel Cell

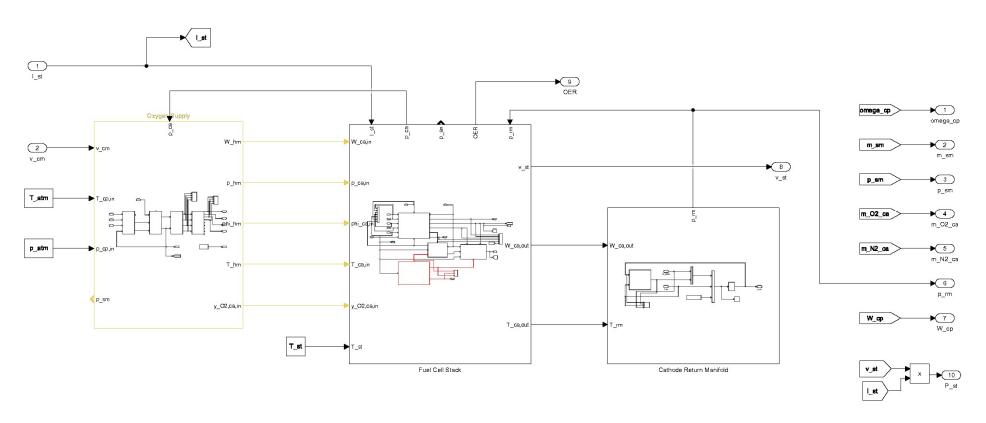


Fig. 12 FC system model in MALAB/Simulink

Modelling of Fuel Cell

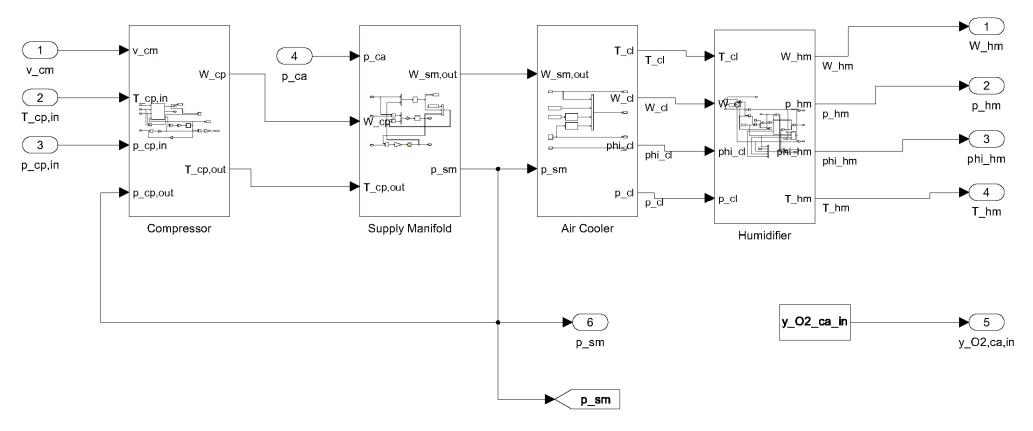


Fig. 13 Oxygen supply model in MALAB/Simulink

Modelling of Fuel Cell

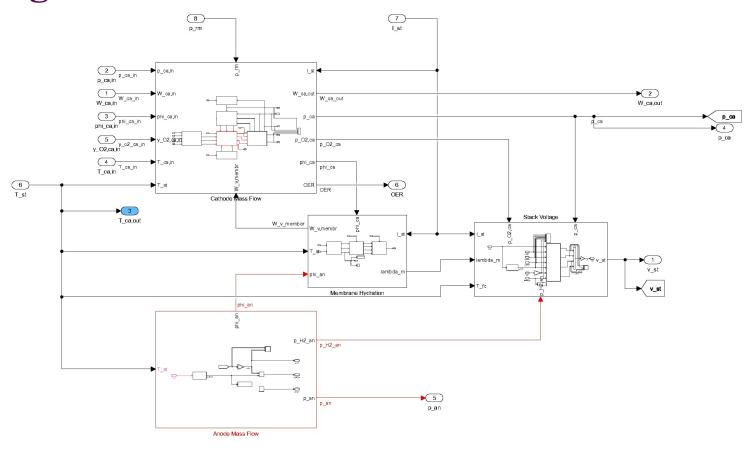


Fig. 14 Fuel cell stack model in MALAB/Simulink

Control of Fuel Cell

There are **three** major control subsystem loops in the fuel cell system: air/fuel supply, water and heat management.

Humidifier control and thermal control

Until extensive experimental data become available, it is more appropriate to assume that the membrane is always fully humidified by other passive means.

The large separation of time scales justifies the assumption that temperature is well controlled compared with the fast oxygen dynamics.

Hydrogen Valve control

It is assumed a fast proportional feedback controller on the hydrogen valve that keeps the anode pressure equal to the cathode pressure almost instantaneously.

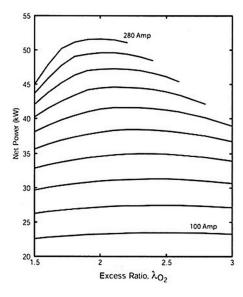


Fig. 15 System net power at different stack currents and oxygen excess ratios

OER control

The oxygen excess ratio (OER), i.e., $\lambda_{O_2} = \frac{W_{ca_{in}}}{W_{ca_{react}}}$. Maintaining an optimal OER ensures sufficient oxygen supply during varying load demands, protecting the fuel cell stack and prolonging its lifespan.

Simulation results

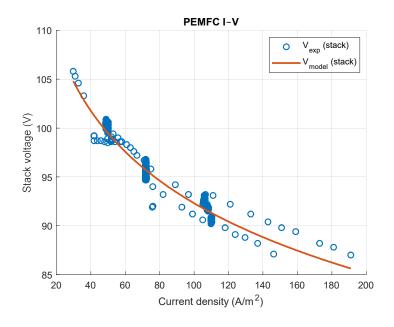


Fig. 16 V-I curve fitting results

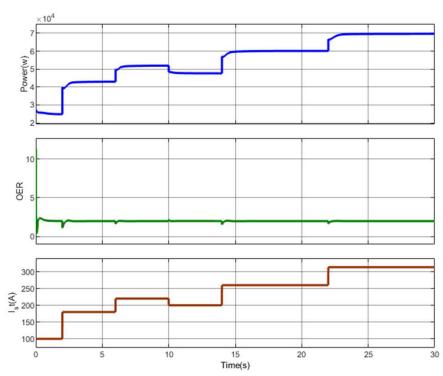
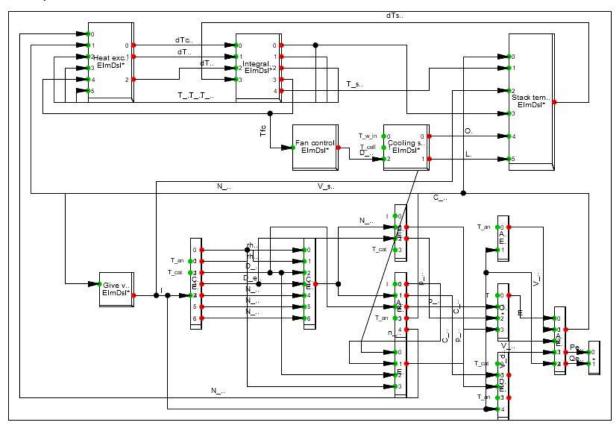
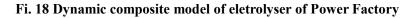


Fig. 17 OER control of electrolyser under varying current

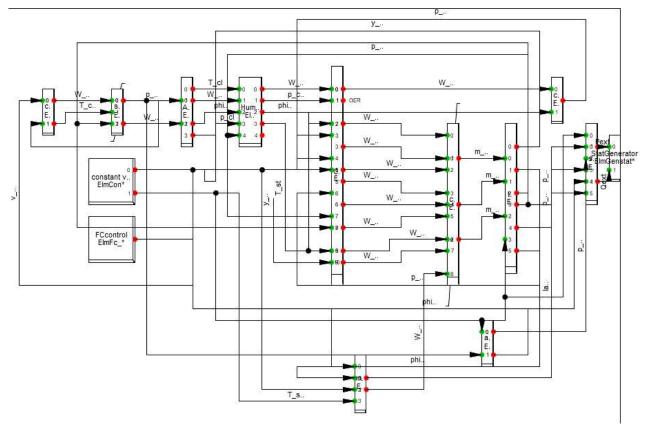

- Background and why we are doing it About Hydrogen / Intro of electrlyser/ Intro of fuel cell
- Modelling and control of electrolyser


 About Electolyser modelling / Electrolyser system control
- Modelling and control of fuel cell About Fuel cell modelling / Fuel cell system control
- Electrolyser and Fuel Cell system for DIgSILENT/Power factory

 About realization of modelling and control for fuel cell and electrolyser system in DIgSILENT /Power factory

DIgSILENT/Power factory model

Electrolyzer:



V	Name	Type
) Pio	Electrolyzer	Electrolyzer
dsl	Activation vol	Activation overvoltage
dsl	Add voltage	Add_vol
dsi	Anode mass flow	Anode mass flow
dsl	Cal_N_H2O	Calculate N_H2O_m
dsl	Cal_p_H2O	Calculate_p_H2O_me
dsl	Cathod mass flow	Cathod mass flow
dsl	Cathode coeff	Cathode coefficient
dsl	Cooling system	Cooling system
dsl	DSL Model	Calculate_p_H2O_me
dsl	Diffusion vol	Diffusion_ohmic_Volt
dsl	Fan control	Fan_control
dsl	Give value to stack	Give_value_tostack
dsl	Heat exchanger	Heat exchanger
dsl	Integral Temp	Integral Temp
dsl	Open circuit vol	Open_circuit_voltage
dsl	stack temperature	Stack temperature
4	General Load	General Load Type
-	Terminal_H	
====	Terminal_L	
0	2-Winding Transformer	2 MVA 20/0.4 kV Yyn6
	External Grid	

DIgSILENT/Power factory model

\$100	FC_modelCtrl	FC model and ctrl
dsl	Anode Mass flow	Anode mass flow
dsl	Cathod mass integr	Cathod flow_integ
dsl	Cathode mass flow	Cathode Mass Flow
dsl	Cathode return manifold	Cathod return manifold
dsl	Constant_value	Constant_Value
dsl	FC_control	FC_control
dsl	FC_stack voltage	FCstack_voltage
dsl	Membrane hydration	Membrane hydration
dsl	O2 supply manifold block	O2_supply manifold
dsl	O2_compressor	O2_Compressor
dsl	O2_cooler	O2_air cooler
dsl	O2_humidifier	O2_humidifier
dsl	O2_supply manifold	O2_Supply manifold
dsi	thermo dynamic calculation	thermo dynamic calc
@	Static Generator	
4	General Load	Lod-1
9	Terminal H	
70.00	Terminal L	
0	2-Winding Transformer	2 MVA 20/0.4 kV 3 GE
	External Grid	

Fig. 19 Dynamic model of fuel cell of Power Factory

Thanks for listening!