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Background

The United Kingdom is halfway on its path to Net Zero

Other sectors

Industry

Building

Transport

Electricity and
heat generation

1990 L Land-use, Land-use Change and Forestry

reduction of economy-wide greenhouse gas emissions from 1990 to 2023

2030 target
-68%

----------

*e.
.,
L
ce

2035 target
. | decarbonised
© | power sector

2030 2035

* The UK government has planned the production of
10GW low-carbon hydrogen by 2030 and 240-500
TWh low-carbon hydrogen supply by 2050 [1].

* The British Energy Security Strategy set the target
to 10 GW by 2030, with at least half coming from
electrolytic hydrogen, and up to 1 GW of
electrolytic hydrogen by 2025 [2].
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IEA. CCBY 4.0

Model requirements

* Power factory:

Do not have electrolyser model;

Fuel cell model is considered as static generator which
only set P,Q value without detailed and BoP.

« MATLAB:

Closed library composition;

No direct path to PowerFactory

[1] British Energy Security Strategy, 2022, https://www.gov.uk/government/publications/british-energy-security-strategy
[2] IEA (2024), United Kingdom 2024, IEA, Paris https://www.iea.org/reports/united-kingdom-2024, Licence: CC BY 4.0

BoP: Balance of Plant

A




Background

Simple
v" Fast; Easy to integrate in grid tools
O Fits well only under exact operating

point; No dynamics, thermal/hydration,
or gas-path effects.

v’ Sensitivity to temperature and
partial pressures is explicit

O Lacks dynamics (thermal, water,
manifold); no BoP.

Semi-empirical

v Captures plant-level
interactions; Suitable for grid
service

U Requires multi-disciplinary data.

Lumped

v" Highest physical resolution;

U Very high computational cost; unsuitable
for system-level or long-horizon runs;
Difficult to couple tightly with grid/EMS
simulations

High-fidelity CFD
(2D/3D, porous media)

Complex

Why a dynamic model instead of a simple
source/load model?

 Safety & constraints are invisible in a simple
source/load model

» Efficiency & H: production are state-dependent

* No dynamics, thermal or gas effects

What fidelity is “enough” for power system
simulation?

* State-dependent V—I/m and H: production/consumption
* Basic dynamics (mass flow, partial pressure, thermal).
* BoP interactions

Wan
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Modelling of electrolyser

Modelling Points
* PEM electrochemical stack model
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* Thermal model of the stack

Inputs: Stack current, environment temperature,
PEM electrolysis system - MIOlAr water flow

Outputs: Stack temperature
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Fig.1 General layout of a PEM electrolysis system consisting of the PEM stack and
module with power electronics and the EL subsystems for water purification, gas drying,
and fine purification and cooling unit [1].

[1] Bessarabov, Dmitri, et al., eds. PEM electrolysis for hydrogen production: principles and applications. CRC press, 2016. \/\/—
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Fig. 2 PEM electrolyser system model in MALAB/Simulink
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Fig. 3 Electrolyser stack model in MATLAB/Simulink




Thermal control of electrolyser

Why Thermal Control Is Essential for Electrolyser

Thermal control is mandatory to keep the stack in its
? — T efficiency—lifetime optimal spot, preserve hydration,
Tstack

[P} 1y
¢ Dian respect safety limits.

Cooling fan

T

Control objectives:

|
. | : i
__________ — > G |7 | Track temperature set-point with small steady-state error.
Water 4— Eotwaterfbw <_| |
supply .
Heat
| .
exchanger L — | Inputs & Outputs:
Water tank Electrolyser Inputs: Molar Water flow, environment temperature, Stack
Witerpunp > Waergirfow B Valve stack current and voltage

Outputs: Duty cycle of the fan

Fig. 4 PEM stack temperature control with BOP of the model. Constraints:

Hard limits: Maximum and minimum temperature.

Actuator limits: fan duty €[0,1]



Simulation results

Experimental |-V Curve
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Fig. 5 V-I curve fitting results
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Fig.8Temperature performance of PEM electrolyser
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Fig. 10 Thermal control when the reference of
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Modelling of fuel cell

Modelling Points

* Fuel cell stack model
__ Inputs: Mass flow rate of vapor, partial pressure,
o  temperature of cathode, exit flow relative humidity

@ Anode recirculation blower

oasere Qutputs:  Stack  voltage, OER, cathode partial
@ Electric air compressor

0 wmaerivos e Pressure,  cathode  mass  flow, cathode output

° Stack-isolation and control valv

BN temperature
o ehxle

Sensor set

© Low-pressure sensor

@ Hydrogen-exhaust sensar

g Pressure-based air-flow meter b Oxygen Supply mOdel
Hot-film air-mass meter .
Inputs: Cathode partial pressure, compressor voltage,

@& Air path .

© e s environmental temperature

@ High-voltage path .

W eacotdpath Outputs: Mass flow rate of vapor, partial pressure,

temperature of cathode, exit flow relative humidity

* Cathode return manifold

Inputs:  cathode mass flow, cathode output
temperature

Outputs: return manifold partial pressure

Fig. 11 PEM stack with BoP [1].

[1] Bessarabov, Dmitri, et al., eds. PEM electrolysis for hydrogen production: principles and applications. CRC press, 2016. \/\/—



Modelling of Fuel Cell
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Fig. 12 FC system model in MALAB/Simulink




Modelling of Fuel Cell
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Fig. 13 Oxygen supply model in MALAB/Simulink
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Modelling of Fuel Cell
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Fig. 14 Fuel cell stack model in MALAB/Simulink




Control of Fuel Cell

There are three major control subsystem loops in the fuel cell system: air/fuel supply, water
and heat management.

e Humidifier control and thermal control

Until extensive experimental data become available, it is more appropriate to assume that
the membrane is always fully humidified by other passive means.

The large separation of time scales justifies the assumption that temperature is well
controlled compared with the fast oxygen dynamics.

* Hydrogen Valve control

It is assumed a fast proportional feedback controller on the hydrogen valve that keeps the
anode pressure equal to the cathode pressure almost instantaneously.

Net Power (kW)
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o o w o w

w
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N
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Fig. 15 System net power at different
stack currents and oxygen excess ratios

e OER control

Wea:
cajn

The oxygen excess ratio (OER), i.e., 1o, =

Wcareact

varying load demands, protecting the fuel cell stack and prolonging its lifespan.

. Maintaining an optimal OER ensures sufficient oxygen supply during

VoV



Simulation results

PEMFC I-V <10° : : , , .
110 - .E I | I T
lo) Vexp (stack) 6 | | 3 r
V el (StaCK) .§5 i L
% ]
105 - z
a4 1-
3
g 2 Al | 1 ! L
< 100
..8’ T T T T T
g 10}
S
© 95 -
o &
O s}
9 - h v ¥ v
o 1 1 i 1 1
T T T T T
385 | | | | | | | | ) 300} T t -1 T I
20 40 60 80 100 120 140 160 180 200 250 ! | g
Current density (A/m?) £ 200k _‘_l_[
150 : -
100 [ .' ; [ [
0 5 10 15 20 25

Time(s)

Fig. 16 V-I curve fitting results Fig. 17 OER control of electrolyser under varying current
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DIgSILENT/Power factory model
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DIgSILENT/Power factory model
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Thanks for listening!




