The Utilisation of Bus-Section Reactors to Increase Distribution Network Hosting Capacity: Challenges and Recommendations

Mark Kent (United Kingdom) SC C2 – PS2 – CIGRE UK NGN Young Members Showcase 2024 CIGRE Session - Paris – 25/30 August 2024

Agenda

Hosting Capacity and Fault Level

Distribution Network Use Case

System Analysis Challenges

Future Recommendations

Hosting Capacity and Fault Level

The rapid growth of embedded generation can significantly erode network hosting capacity

equipment

In order for DNOs to operate a safe and secure network, design limits are imposed

System Voltage	Three Phase Symmetrical Short Circuit Current		Single Phase Short Circuit Current	
	MVA	kA	MVA	kA
33kV	1000	17.5	240	4.2
11kV	250	13.1	250	13.1

When a site has been identified and validated as having potential constraints, fault level mitigation is key

In order to meet ambitious Net Zero targets, it is vital that DNOs find solutions to create further hosting capacity

Current-Limiting Reactors

Well-established devices used to reduce short-circuit current

- Devices consisting of inductive coil with large inductive reactance compared to resistance
- Either connected in series with lines, or parallel across feeders/switchboards
- Typically either oil or air-cored, with advantages and disadvantages for both
- Proven technology, with academic insights being established over 100 years ago, present relatively low risk in utilisation

A number connected to the distribution network in central and southern Scotland, with many more planned in the future, now built into network models

Distribution Network Use Case

Grid substation switchboard can be split through usage of the bus-section circuit breaker

Technical challenges identified from system design and analysis on authorised models of distribution network in DIgSILENT PowerFactory

NOP: Normally Open Point

Abnormal Power Flows

The insertion of new high impedance across bus-section can have unintended effects

Consideration must be given to network balancing and asset capability!

CB: Circuit Breaker | DAR: Delayed Auto Reclose | TO: Transmission Owner | BESS: Battery Energy Storage System

Increase in system impedance can affect voltage change during system events

	Voltage Change (%) - Maximum Demand Scenario				
Substation	Before BSR		After BSR		
	Loss of BESS	Loss of GT	Loss of BESS	Loss of GT	
GSP	0.71%	-2.29%	1.85%	-3.25%	
Primary A	0.72%	-2.43%	1.99%	-5.10%	
Primary B	0.72%	-2.40%	1.87%	-5.07%	
Voltage rise u loss of BESS almost tri	pon site ples			Volta of gri doub	ge drop upo d transformo les

Issue: risk of non-compliance with EREC P28 limits to fast changes in supply voltages

loss

Optimal Reactor Sizing

Must be sized correctly to ensure desired performance is met

MVA Rating	Reactor Impedance		
 Greater rating results in more thermal capacity during system events 	Higher impedance results in greater fault level reduction		
Costs affected by desired MVA rating	 Greater risk of abnormal power flows and excessive voltage excursions 		
Increases footprint of reactor	 Potential for BSR to be overloaded if impedance too low 		

Performance dependant on topology and connections – each network is different!

Future Recommendations

From challenges identified from network analysis, the following recommendations can be made

 Wide range of studies should be undertaken at design stage - fault level, voltage, load flow Important that all relevant scenarios are studied - loading, outages etc. Studies can then inform potential requirements of reinforcement or protection schemes Vital to have understanding of assets such as tap- changer capability These limitations should then be built into network impact studies Commercial considerations - must be picked up at design and quotation stage Protection of assets - how will LMS operate? Vital to have understanding of assets such as tap- changer capability Topology of network downstream of reactor has large impact Expand scope of models to lower voltage to study impact Understanding of topology interventions Consideration to amount of fault level headroom created Create "off the shelf" solution framework 	Network Impact Studies	Understanding of Asset Performance	Topology Considerations	Reactor Sizing
	 Wide range of studies should be undertaken at design stage – fault level, voltage, load flow Important that all relevant scenarios are studied – loading, outages etc. Studies can then inform potential requirements of reinforcement or protection schemes 	 Vital to have understanding of assets such as tap- changer capability These limitations should then be built into network impact studies Commercial considerations – must be picked up at design and quotation stage Protection of assets – how will LMS operate? 	 Topology of network downstream of reactor has large impact Expand scope of models to lower voltage to study impact Understanding of topology can rule out BSR interventions 	 Important to gain most effective usage of such schemes Bespoke sizing studies should be conducted at each site Consideration to amount of fault level headroom created Create "off the shelf" solution framework

In Summary:

- Fault level management key in developing and operating a safe and secure network
- BSRs: technically efficient, cost-effective solution, but not without constraints
- More work required in developing understanding of whole system interactions and models to assess impact of schemes on distribution networks

Mark Kent | m.kent@spenergynetworks.co.uk | linkedin.com/in/mark-kent99

