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Electrolysis and Wind Turbine Modelling
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Each heat exchanger is discretised by the number of total crossflow passes and the total length of the tubes.

» T is temperature, x is the length down the tubes,
* m is mass flow rate, p is density,

« AH is the cross sectional area of flow,

« UH is the overall heat transfer coefficient.

*  P.pe is the total perimeter of all the tubes.

Heat Exchanger Modelling
» Ensures efficient heat transfer between process streams in the rSOC system
» Captures temperature dynamics that impact efficiency, durability, and response time

> Provides realistic boundary conditions for the full SOEC model and system simulations

> Key enabler for accurate prediction of hydrogen production and grid service performance
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» The Steam Generator does not contain crossflow passes and is only sized by the length of the tubes which
flow through the water.

» The electrical load required from resistive heating is calculated via the heat of vaporization for the Steam
Generator.

» For topping heaters, the electrical load is calculated from the sensible heat to raise the fluid to its setpoint
temperature.

Steam Generator Modelling
» Produces high-temperature steam required for SOEC operation
» Electrical load determined by vaporization energy and sensible heating requirements

» Strongly affects system efficiency, start-up time, and operational flexibility
> Provides realistic thermal input conditions for accurate hydrogen production modelling
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« (; is concentration, x is the length down the caell,
*  ucy, is the fluid velocity, h¢ /4 is the height of the flow channel,
» v is the stoichiometric coefficient of each reacting species

Stack Model

» Captures electrochemical reactions, mass flow, and heat transfer inside the cell stack
» Links gas composition, temperature, and current density to hydrogen production

» Models key physical limits (activation, ohmic, and concentration losses) that drive efficiency and degradation

» Provides the foundation for predicting stack performance under real operating conditions and grid service
demand.




The four energy balances are separated for the cathode stream (C), the anode stream (A), the electric conducting structure
(S), and the interconnecting material between each cell (1).
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Stack Model

» Captures electrochemical reactions, mass flow, and heat transfer inside the cell stack
» Links gas composition, temperature, and current density to hydrogen production

» Models key physical limits (activation, ohmic, and concentration losses) that drive efficiency and degradation

» Provides the foundation for predicting stack performance under real operating conditions and grid service
demand.




For a cell discretised in the length direction with n discretisations, there are 5n unknown variables
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Stack Model

» Captures electrochemical reactions, mass flow, and heat transfer inside the cell stack
» Links gas composition, temperature, and current density to hydrogen production

» Models key physical limits (activation, ohmic, and concentration losses) that drive efficiency and degradation

» Provides the foundation for predicting stack performance under real operating conditions and grid service
demand.
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Simulation based on NREL OpenFAST and MATLAB/simulink

Wind Turbine Model

» Simulated using NREL OpenFAST (aerodynamics & structural response) coupled with
MATLAB/Simulink (generator, converter, grid control).

» Provides realistic power output under variable wind and grid conditions.

» Essential for assessing how wind farms interact with rSOCs to deliver frequency regulation and
ancillary services.
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Simulations

Dynamic regulation ancillary service:

» System: 3 OWFs (1 GW each) + 3 rSOCs (200 MW each), connected via HVAC to IEEE 39-bus grid.

* r'SOC1 & rSOC2 in fuel cell mode (20% & 30% load).

* rSOC3 in electrolysis mode (50% load).OWFs: operate at maximum power point tracking (MPPT), then provide
frequency support.

Outcome: joint OWF-rSOC response stabilises grid frequency under random, volatile load changes.

Location-independent: rSOCs can be placed onshore or offshore.
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Simulation results

Case 1: OWFs & rSOCs provide dynamic frequency regulation service, variable

wind speed, variable load pattern
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Activation and de-activation of OWF-rSOCs in real-time

Master Slaves: replicating the output power of rSOCs and OWFs



HIL test

Connection of 3 OWFs (each 1GW) and 3 rSOCs (each 200MW) to the onshore power system (IEEE 39 bus system) via HVAC connection
rSOCs and OWFs participate in dynamic frequency regulation. The output of rSOCs and OWFs at the onshore node is replicated by electronic load

emulator and grid is replicated by the Grid Emulator. The accumulated powers from the OWFs-rSOCs help regulate the grid frequency to be close to
50Hz.
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HIL test

Connection of 3 OWFs (each 1GW) and 3 rSOCs (each 200MW) to the onshore power system (IEEE 39 bus system) via HVAC connection

rSOCs and OWFs participate in dynamic frequency regulation. The output of rSOCs and OWFs at the onshore node is replicated by electronic load
emulator and grid is replicated by the Grid Emulator. The accumulated powers from the OWFs-rSOCs help regulate the grid frequency to be close to
50Hz.
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