

# Heterogeneous Multi-agent Proximal Policy Optimisation based Control Technology for Fast Frequency Response



Mostafa Kheshti, Xiaowei Zhao

Intelligent Control and Smart Energy (ICSE), University of Warwick

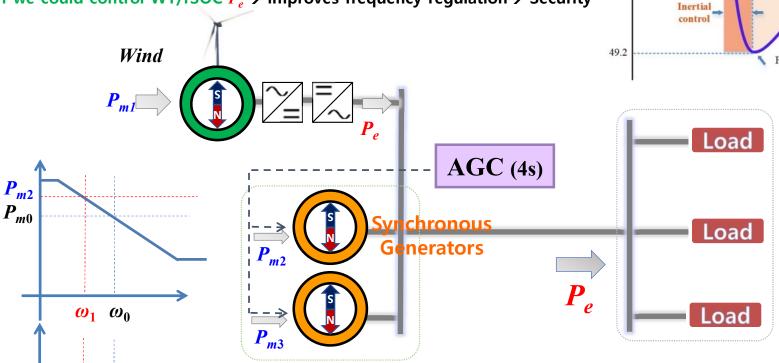


# Modelling

- Ancillary Services
- SOEC and WT models

# Intelligent Control

- Heterogeneous Multi-agent Proximal Policy Optimisation
- Fuzzy Control


# Real-time Validations

- Simulations case studies
- HIL testing

 $\omega_1$   $\omega_0$ 

Large load change in multi-machine grid

If we could control WT/rSOC  $P_e \rightarrow$  improves frequency regulation  $\rightarrow$  Security



☐ Win-Win-Win approach

ORE/rSOC developer-SO-Consumer

Secondary

control

Steady state frequency

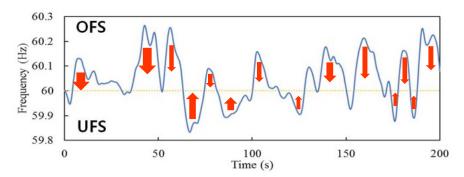
≈ 30mins

Power imbalance event

ROCOF

Frequency (Hz)

≈30s


Primary control

Nadir

Inertia response: Large load increase  $\rightarrow$  Frequency decline Primary control: Governor increase  $P_m$ , stabilizing f to  $\omega_1$  Secondary control: SO increases  $P_m$ , recovering f to  $\omega_0$ 

FS of a WTG: Same function of BESS but NO ADDITIONAL COST!!

**Dynamic Regulation** (DR) is a pre-fault service designed to slowly correct continuous but small deviations in frequency. The aim is to continually regulate frequency around the target of 50Hz.



Frequency regulation of an ORE-rSOC

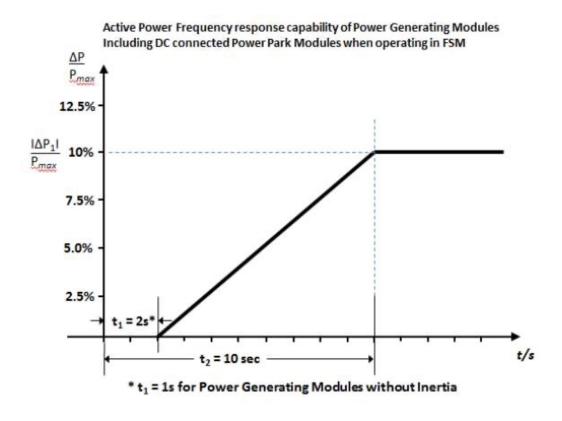
## $\Delta f > 0$ (Over-frequency)

KE is absorbed into the rotating masses, thereby increasing the rotor speed

## $\Delta f$ < 0 (Under-frequency)

Increases output power of a ORE-rSOC increase power of SOFC/ decrease power of SOEC Frequency increases

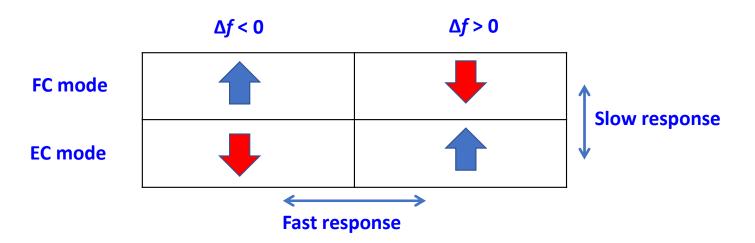
KE is released from the rotating masses, thereby decreasing the rotor speed Overdeceleration of a WTG should be avoided for stable operation of a WTG


#### **Dynamic Regulation - Technical Requirements**

| Dynamic | Regulation | technical | specification | S: |
|---------|------------|-----------|---------------|----|
|         |            |           |               |    |

| Topic                             | Dynamic Regulation                  |
|-----------------------------------|-------------------------------------|
| Speed of response                 | 10 seconds                          |
| Pre/post fault                    | Pre-fault                           |
| Delivery range                    | +/-0.015 -0.2 Hz                    |
| Deadband (delivery %)             | +/-0.015 (0%)                       |
| Initial linear range (delivery %) | +/-0.015 -0.2 Hz (100% at +/-0.2Hz) |
| Knee point                        | No knee point                       |
| Second linear range (delivery %)  | n/a                                 |
| Full delivery point               | +/-0.2Hz                            |
| Max ramp start                    | 2 seconds                           |

| Parameter                                                                                                                                                                                                              | Setting    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| Active Power as a percentage of Maximum Capacity (frequency response range) $\binom{ \Delta P_1 }{P_{max}}$                                                                                                            | 10%        |
| Maximum admissible initial delay t <sub>1</sub> for<br>Power Generating Modules (including<br>DC Connected Power Park Modules)<br>with inertia unless justified as specified<br>in ECC.6.3.7.3.3 (iv)                  | 2 seconds  |
| Maximum admissible initial delay t <sub>1</sub> for Power Generating Modules (including DC Connected Power Park Modules) which do not contribute to System inertia unless justified as specified in ECC.6.3.7.3.3 (iv) | 1 second   |
| Activation time t <sub>2</sub>                                                                                                                                                                                         | 10 seconds |


Table 6.3.7.3.3(b) – Parameters for full activation of **Active Power Frequency** response resulting from a **Frequency** step change. Table 6.3.7.3.3(b) also includes the mathematical expressions used in Figure 6.3.7.3.3(b).



Type C Power Generating Module: with a Grid Entry Point or User System Entry Point below 110 kV and a Maximum Capacity of 10MW or greater but less than 50MW

Type D Power Generating Module: with a Grid Entry Point or User System Entry Point at, or greater than, 110 kV; or with a Grid Entry Point or User System Entry Point below 110 kV and with Maximum Capacity of 50MW or greater

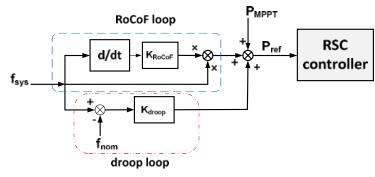
Considerations for Frequency regulation using rSOC



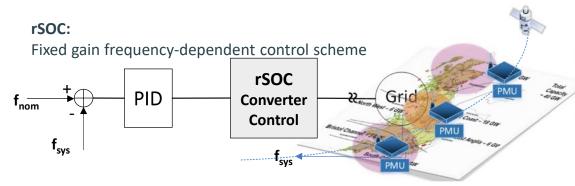
Switching from EC mode to FC mode and vice versa, is a slow response. However, the change in output power magnitude within one mode of operation is a fast response. Therefore, we consider the following strategy for rSOC to participate in dynamic frequency regulation:

If the stack is in SOEC or SOFC mode, they operate within 10-100% of its capacity to ensure the device level stability and lifetime efficiency of the stack.

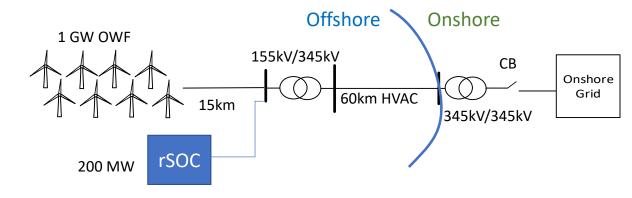
### $\Delta f > 0$ (Over-frequency)

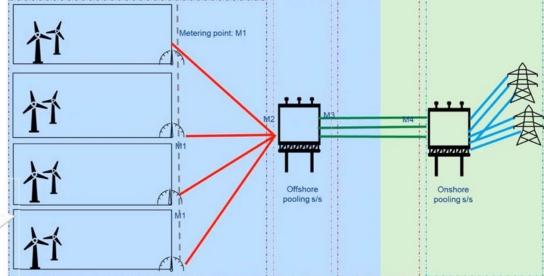

While the operation of the stack remain within 10-100% of its capacity: Decrease the power of SOFC, and increase the power output of SOEC in the grid.

## $\Delta f$ < 0 (Under-frequency)


While the operation of the stack remain within 10-100% of its capacity: Increase the power of SOFC, and decrease the power output of SOEC in the grid.

#### OWF:


Frequency-dependent Inertial Control (FDIC)




- Emulate inertial and governor response of SGs
- Inject active power corresponds to frequency deviations



- SOFC mode to generate power
- SOEC mode to absorb the surplus power



