Potential for GW-scale substations volume reduction moving from HVDC to MVDC using Superconducting Cable Technology

Sebastian Neira (UK) **SC B4 – PS3** 2024 CIGRE Session - Paris – 24th January, 2024

Table of contents

- Introduction: Superconducting cables for power transmission
- Converter topologies for high-current MVDC substations
- 3D modelling methodology for estimating valve hall size
- Conclusions

Introduction

Superconducting Cables for Power Transmission

Future European grid requires several GW-scale transmission links

Electrical energy demand will triple, and renewable energies could reach up to 50% of generation mix by 2050

Superconducting cable technology shows potential for GW MVDC transmission links

Developed projects show a trend towards longer distances and higher currents at MV levels

Recent Superconductor Projects			
2013		Ampacity, Essen	1km, 40MVA, 10kV, AC
2018	Best Paths	EU Horizon's 'Best Paths' Project	30m, 3.2GW, 320kV, DC
2019		Shingal, Seoul	1km, 50MVA, 23kV, AC
2021	We connect a greener world	Superlink, Munich	12km, 500MVA, 110kV, AC
2027*	S CARLET	EU Horizon's 'SCARLET' Project	>20km, 1GVA, 100kV, DC

Converter topologies for high-current MVDC substations

Starting point: Conventional HVDC MMC

Preferred solution for VSC substations nowadays with currents up to 3 kA

MVDC MMC with parallel arms

Topology keeps the submodule ratings, but requires modifications to AC and DC yards components

MVDC MMCs in parallel

Topology keeps all substation components ratings performing the parallel connections at converter level

MVDC MMC in parallel with LCC

Topology uses the higher current capabilities of LCC thyristors, with enhanced controllability given by the MMC

3D modelling methodology for estimating valve hall size

Conventional HVDC MMC valve hall

Valve hall design for MVDC high current topologies

Potential reduction of 60% in valve hall volume moving from 500 kV to 100 kV

Particularly relevant for offshore applications where size of platforms is a large cost driver

Considerations:

- 5m clearance for 500 kV valve hall
- 1m clearance for 100 kV valve hall
- 3m access distance for 100 kV valve hall
- Horizontally arranged towers, 100 kV per level
- 5 levels per tower

Conclusions

- Parallel MVDC topologies enable the operation of bulk transmission links based on superconducting cables
- 3D modelling shows potential for reducing valve hall size up to 60% due to reduced insulation distance requirements
- There is need for adapting DC switchgears and control systems to manage the operation of high-current parallel topologies

