Refurbishment Strategies and Considerations for HVDC Stations

Sunyoung Lim (UK) SC B4 – PS 1 2024 CIGRE Session - Paris - Date

Table of contents

- INTRODUCTION
- TYPES OF REFURBISHMENT
- HVDC REFURBISHMENT PROJECTS
- CONSIDERATIONS and STRATEGIES
- CONCLUSION

INTRODUCTION

Background

- ✓ With a growing emphasis on renewable energy sources, HVDC's role becomes indispensable
- ✓ Ensure their ongoing reliability, performance, and compliance with updated regulations

Methodology

- ✓ Exploring the past HVDC refurbishment projects
- ✓ Addressing strategies and consideration
- ✓ Suggest strategies for different types of refurbishments

INTRODUCTION

Expected Contribution

 \checkmark Providing valuable insights and a roadmap for stakeholders

Importance of HVDC station refurbishment

- Ensuring the ongoing reliability and availability of the existing HVDC systems
- ✓ Extending lifespan
- ✓ Optimizing its functionality

• Why do we need strategies?

- \checkmark Maximise the value of the investments
- ✓ Risk mitigation
- ✓ Contributes to the long-term reliability and sustainability

TYPES OF REFURBISHMENT

TYPES OF REFURBISHMENT

Selective Equipment Replacement

- ✓ Focuses on extending operational lifespan (cost-effective)
- ✓ Identify equipment with malfunctioning, outdated, or have reached the end of their operational life

Upgrades

- $\checkmark\,$ Aims at enhancing the station's performance
- ✓ Comply with new standard, incorporate new technologies
- ✓ Ex. Installation of advanced control systems

Overhaul refurbishment

- ✓ Involves complete overhaul or replacement of HVDC station components or systems.
- ✓ Driven by comprehensive system issues, high-maintenance cost, or the systems have reached the end of their design life

HVDC REFURBISHMENT PROJECTS

HVDC REFURBISHMENT PROJECTS

Project Name	Capacity	Туре	Commissioned	Refurbished	Refurbishment type
	(MW)		year	year	
Cahora Bassa HVDC System (Mozambique – South	1290	LCC	1979	Apollo station :2008 (29y)	Upgrades (Valves)
Africa)				Songo station : 2013-2014 (35y)	Overhaul refurbishment (Converter transformer, Valves, control and protection systems, AIS, earth electrodes, DC smoothing reactors, arresters measuring equipment, Grid Master Power Controller (GMPC))
Nelson River (Canada)	2000	LCC	1972	1993 (21y) 2004 (32y)	Replacement (Valves (increased power rating) and cooling plants, controls)
Konti-Skan Pole 1 (Sweden-Denmark)	380	LCC	1965	2006 (41y)	Overhaul refurbishment
UK-France Interconnector	2000	LCC	1986	Pole1: 2011 (25y) Pole2: 2012 (26y)	Upgrades (Valves and cooling plants, controls)
Heanam-Jeju island (South Korea)	300	LCC	1996	2020 (24y)	Upgrades (Valves and cooling plants, controls)
Brazil-Argentina Interconnector (Garabi station)	2200	LCC	2000	Undergoing (23y)	Upgrades (Controls)

CONSIDERATIONS and STRATEGIES

Technical evaluation Environmental and safety regulations Strategic framework and planning Project management and stakeholder collaboration

TECHNICAL EVALUATION

Performance Assessment

- ✓ Involves comprehensive statistical analysis of operational data, including equipment failure and trip events.
- ✓ Identifies equipment contributing to decreased availability and reliability.
- ✓ Prioritise replacements

Component Assessment

- Involves detailed inspections and performance assessments of converters, transformers, and control systems.
- Inspect wear, aging, malfunction, efficiency, and operational limitations.

Diagnostic Testing

- Utilizes tests such as insulation resistance, partial discharge measurements, and thermographic inspections.
- ✓ Identifies conditions of specific equipment

ENVIRONMENTAL AND SAFETY REGULATIONS

Environmental Considerations:

Safety Measures:

- Prioritizing safety by replacing hazardous equipment (e.g., oil-cooled systems) with safer alternatives (e.g., air-cooled equipment).
- Minimizes risks of flammability, enhancing safety during maintenance and operation.

Transition to Eco-Friendly Alternatives:

- ✓ Shift from hazardous materials (e.g., mercury in arc valves) to environmentally friendly alternatives (e.g., thyristor valves).
- ✓ Addresses high maintenance costs and mitigates potential environmental risks.

STRATEGIC FRAMEWORK AND PLANNING

Risk Analysis

- ✓ Identifies potential failure points and assesses their impact on station functionality.
- ✓ Analyzes consequences of component failure on operation and grid stability.

Lifecycle Assessment

- ✓ Estimates remaining useful life of components and systems. (Obsolescence)
- ✓ Lifecycle cost analysis to assess the long-term cost-effectiveness

Comparative Analyses

- Evaluates advantages and disadvantages of modern solutions against legacy systems.
- Compares capabilities of newer technologies with existing ones for benefits, efficiency gains, and performance enhancements.
- ✓ Define strategy

PROJECT MANAGEMENT AND STAKEHOLDER COLLABORATION

- Efficient Project Management:
 - ✓ Crucial for overseeing complex refurbishment processes.
 - Ensures achievement of project goals within defined timelines and budgets.
 - ✓ Meticulous planning, resource allocation, scheduling, and risk mitigation.

Stakeholder Collaboration:

- Involves collaboration with engineers, suppliers, regulatory bodies, local communities, and more.
- ✓ Facilitates effective decision-making, problem-solving, and alignment with industry standards.

[Case Example - Cahora Bassa HVDC System]

- ✓ Collaboration with the associated generation facility during refurbishment.
- Coordination efforts to minimize overall outages by synchronizing construction activities.

CONCLUSION

General Considerations :

- ✓ Regulatory compliance
- ✓ Environmental considerations
- ✓ Stakeholder collaboration

Selective Replacement	Upgrades	Overhaul Refurbishment
 Component Assessment Diagnostic testing 	 Technology Assessment Risk analysis 	 Performance Assessment Lifecycle assessment

