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• Background

Motivations
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• Question
– Traditionally, grid-tied inverters widely rely on a PLL 

to align frequency with the grid, hence named grid-
following (GFL)-IBRs. But,…

• PLLs -> de-stabilizers.
• PLL dynamics -> implicit inertial and damping coefficients.

– To overcome the limitations, grid-forming (GFM)-
IBRs have emerged. But,…

• may not always be the optimal choice: 
– a) resonances.
– b) hinder MPPT and require energy storage.

– Stable current-source behaved GFL-IBRs are not 
often subject to these GFM-IBR issues and will likely 
remain the dominant strategy for the foreseeable 
future due to industry trends.

Motivations
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Grid-Following (GFL)-IBR

Grid-Forming (GFM)-IBR



• Literature review
– The above considerations have gained renewed 

interest in refining GFL controls. A promising direction 
is to explore PLL-free approaches [13].

– Early efforts focused on direct power control (DPC). 
Yet, it lacks current controls to limit over currents [16].

– Voltage-modulated DPC [17] was proposed to address 
these issues. However, subsequent studies proved its 
vulnerability to grid frequency deviations.

– Drawing inspiration from GFM-IBRs, researchers 
explored active power-synchronized (PSC) GFL-IBRs 
[19-21]. But, the intrinsic ω-P coupling remains a 
challenge.

Motivations
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• Literature review
– The ω-P coupling led to the early exploration of 

reactive power-based synchronization (RPS). It 
firstly used in formulate GFM-IBRs. 

– Yet, recent studies clarify that PLL-based GFL-IBRs 
also exhibit inherent Q-dominant synchronous 
dynamics [13]. 

– This raises the question of whether the RPS should 
be exclusively classified as a GFM method.

– Based on these ideas, this work introduces a PLL-
free synchronization approach for GFL-IBRs.

Motivations
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PLL induces 
stability issues

Exploring PLL-
free GFL-IBR

DPS -> overcurrent issues
PSC -> ω-P couplings

Recent finding: PLL-based sync. 
couples with Q dynamics

Is it possible to achieve sync. in GFL-
IBR using a Q-driven approach?

Remove PLL?

Progress?

How to maintain a  
stable current-source 
feature for integrating 
renewables?



• What is the mechanism of the method?

AC Capacitor-Based Synchronization
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– The voltage across ac filter 
capacitor Cf in s-domain is:

– After substitution:
• The superscript r denotes 

the rotation in dq-frame.

(1)

(2)

IBR power stage:



• What is the mechanism of the method?
– The coupling between operating frequency and its 

reactive power output (ω-Q) in GFL-IBR is [7]:
• The subscript b denotes the signal base value.
• The symbol ~ denotes small-signal dynamics.
• θi: phase angle of output current vector.
• KωQ(s): transfer function from Q to ω.
• KωV(s): transfer function from V to ω.
• n: Q-V droop coefficient.

AC Capacitor-Based Synchronization
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Reference:
[7] Y. Gu and T. C. Green, “Power system stability with a high penetration of inverter-
based resources,” Proceedings of IEEE, Jul. 2023.

(2)

(3)

(4)

(5)

Q-V droop:



• What is the mechanism of the method?

AC Capacitor-Based Synchronization
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– Hence, by ignoring the coupling term jωCf for its minimal 
influence, an expression for KωV(s) can be:

resemblesInertia 
term

Damping 
term



• What is the method mechanism?

AC Capacitor-Based Synchronization
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(7)(4)

(8)

– Eqn. (8) defines a synchronous controller for GFL-IBR based on 
the ac capacitor dynamics.

– kJ (inertial coef.), kD (damping coef.), and kG (virtual conductance) 
are variable parameters to configure synchronous behaviors.

How is the controller 
designed?



• What is the control design?

GFL-IBR Control Design and Analysis
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Termed ac capacitor dynamics-
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• Does the CacDS control synchronize by balancing Q?

GFL-IBR Control Design and Analysis
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– From Eqn. (8), the CacDS control 
regulates V to achieve synchronization, 
reflecting a reactive power 
synchronization (RPS)-based essence.

– Reformulate the dynamics in Eqn. (5) 
into Eqn. (9) with reference to the 
rotor-swing equation:

Showing a reactive power 
sync. (RPS)-based method



• Why is the RPS a method for the GFL-IBR?
– When the current vector serves as the SRF phase reference, it 

leads to the power equations:

GFL-IBR Control Design and Analysis
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After linearization

(11)

– Eqn. (11) reveals a negative damping 
adversely impacts IBRs’ damping when 
grid weakens (i.e., Lg grows).

– The RPS-based IBR behaves more likely a 
GFL-IBR rather than a GFM-IBR in weak 
grids, confirming a GFL design.



• Can the CacDS control be extended?

– Under the CacDS control, the constant ac 
voltage control (CAVC) is used for sync..

– In practice, often three reactive-power controls 
(RPCs) are used in IBRs:

• CAVC, 
• constant reactive power control (CRPC), and 
• Q-V droop control (QVC).

– Thus, by adding them into the CacDS controller, 
it formulates the unified PLL-free 
synchronization method (Eqn. (12)).

GFL-IBR Control Design and Analysis
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kVC and kQC are constants:
– If kVC ≠ 0 and kQC = 0, it corresponds to the original 

CacDS control.
– If kVC = 0 and kQC ≠ 0, the CRPC strategy is applied.
– If kVC ≠ 0 and kQC = n (Q-V droop coefficient), the 

QVC strategy is applied.

(12)



• Further analysis?
– An SISO model for the proposed 

unified PLL-free GFL-IBR framework is 
derived.

– It illustrates how the angle generated 
by the CacDS control tracks variations 
of the infinite-bus angle.

SISO Model of the GFL-IBR System
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Method validation?

infinite-bus angle dynamics

control generated angle dynamics

small-signal modeling



!"#$

%"!$

%

&'(

• Impact of grid strength on unified PLL-free synchronization

Validation
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Simulations

HiL tests
10% grid 
voltage sag 
applied
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• Impact of grid strength on unified PLL-free synchronization

Validation
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• Impact of synchronization parameters: kD

Validation
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• Impact of synchronization parameters: kJ

Validation
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• Impact of synchronization parameters: kG

Validation
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• This work proposed a synchronous control strategy for grid-tied GFL-IBRs 
based on the ac-side capacitor dynamics, named CacDS GFL-IBR.

• It enables synchronization independent of the active power control and 
PLL, offering explicit synchronous inertia and damping coefficients.

• The analysis study further confirms that reactive power synchronization
(RPS)-based designs manifests GFL-IBR behaviors, not GFM ones.

Conclusion

21
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Inertia 
term:

Damping 
term:

(11)

Control
Diagram:

Lg impacts on 
Q-based sync.:
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• Numerical tests
– An EMT simulation is built to exemplify 

the proposed method.
• At 0.5 s, V* steps from 1 to 1.05 p.u. for 

both the CAVC and QVC, and Q* steps 
from 0 to 0.5 p.u. for the CRPC.

– The inverter begins at point a on the 
initial curves and converges to a new 
equilibrium point a' on the final curves 
after swings. 

– Beyond verifying the presented 
synchronous control, it highlights the 
tight coupling between the reactive 
power output Q and the control-
dependent angle θi in the GFL-IBR.

GFL-IBR Control Design and Analysis
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• Experimental setup
– The experimental study is conducted on 

the platform in the right figure, which 
consists of 

• an Imperix B-Box RCP 3.0 for control 
algorithm implementation (in C codes), and 

• an OPAL-RT OP4512 that emulates the 
system physical circuits with a simulation 
time step of 5 us. 

• Signal exchange between the two devices is 
managed by the Imperix simulator interface, 
enabling real-time controller hardware-in-
the-loop (CHIL) testing. 

– Both the B-Box and OP4512 are linked to a 
host computer via Ethernet cables for 
signal recording using the Imperix Cockpit 
software, as well as for applying associated 
perturbations.

Validation
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• Impact of Power Variation in Network Scenario (WSCC 9-bus grid-based)

Validation
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Voltages following the load increment for (a) GFL #1 and (b) GFL #2.

Results following the load increment in the test system and P* 
increment in GFL #1.

– These results demonstrate the compatibility and 
robust operation of the CacDS GFL-IBR within an 
ac power system environment.


